Evaluation of low temperature waste heat as a low carbon heat resource in the UK
Journal article
G. Davies, H. Lagoeiro, H. Turnell, M. Wegner, A. Foster, J. Evans, A. Revesz, A. Leiper, K. Smyth, J. Hamilton, H. Cooke and G. Maidment (2023). Evaluation of low temperature waste heat as a low carbon heat resource in the UK. Applied Thermal Engineering. 232, p. 121283. https://doi.org/10.1016/j.applthermaleng.2023.121283
Authors | G. Davies, H. Lagoeiro, H. Turnell, M. Wegner, A. Foster, J. Evans, A. Revesz, A. Leiper, K. Smyth, J. Hamilton, H. Cooke and G. Maidment |
---|---|
Abstract | The capture and transport of waste heat represents a great opportunity for the decarbonisation of heat supply in buildings. To date, mostly high temperature waste heat has been reused and reported. However, with the recent advent of low and ambient temperature (4th and 5th generation) district energy networks, there is scope for the recovery and utilisation of heat from a range of novel, low temperature sources. The current study represents one of the first attempts to quantify the size of this opportunity, with particular focus in the UK, and complements the few previous attempts at estimating low temperature waste heat by focussing on a range of novel sources. The approach used was to evaluate a number of low temperature waste heat sources to determine: (a) the annual quantity of waste heat generated; and (b) the temperature(s) of the waste heat, for each heat source. In many cases, this was achieved using methodology and assumptions derived from the authors’ earlier investigations. The relative merits and potential of each heat source are also discussed, with respect to location, proximity to end users, need for upgrade using a heat pump, continuity of supply and distribution options for reuse, for example by using district energy networks with different operating temperatures. The total quantity of waste heat energy identified from the heat sources considered in this study, for England, Wales and Northern Ireland, was estimated to be 572 TWh.a−1, which would represent 132% of the total energy consumption for heat in these countries (432 TWh.a−1). Although this study focused on the UK potential for low temperature waste heat, the estimation methods developed and resulting analysis are generic and could also be applied in the context of other countries. |
Year | 2023 |
Journal | Applied Thermal Engineering |
Journal citation | 232, p. 121283 |
Publisher | Elsevier |
ISSN | 1873-5606 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.applthermaleng.2023.121283 |
Web address (URL) | https://doi.org/10.1016/j.applthermaleng.2023.121283 |
Publication dates | |
25 Nov 2023 | |
Online | 22 Aug 2023 |
Publication process dates | |
Accepted | 03 Aug 2023 |
Deposited | 23 Aug 2023 |
Publisher's version | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/94w6x
Download files
128
total views86
total downloads0
views this month3
downloads this month