Modelling Of The Thermal Interactions Of Underground Railways With Nearby Vertical Ground Heat Exchangers In An Urban Environment

PhD Thesis


Revesz, A (2017). Modelling Of The Thermal Interactions Of Underground Railways With Nearby Vertical Ground Heat Exchangers In An Urban Environment. PhD Thesis London South Bank University School of Built Environment and Architecture https://doi.org/10.18744/PUB.002071
AuthorsRevesz, A
TypePhD Thesis
Abstract

Ground source heat pumps (GSHPs) can provide an efficient way of heating and cooling
buildings due to their high operating efficiencies. The implementation of these systems in
urban environments could have further benefits. In such locations ground source heat is
potentially available from alternative sources such as underground railways (URs).
The potential benefits for using the waste heat generated by URs with localised GSHPs are
established in this thesis. This was achieved through investigations of UR-GSHP
interactions.
The research detailed here was mainly conducted through Finite Element (FE) numerical
modelling and analysis. First a preliminary two-dimensional (2D) FE model was developed.
This model was highly simplified to enable rapid analysis of the systems. The model was
used to establish key parameters and phenomena for more detailed additional research.
Since the operation of the URs and GSHP involves complex, transient, three-dimensional
(3D) transport phenomena and extreme geometrical aspect ratios, 3D numerical models of
URs and vertical ground heat exchangers (GHEs) were independently developed and
validated. These individual models were then built into the same modelling environment for
their combined analysis. Initial investigations with the combined 3D model showed that
interactions occur between URs and localised GSHPs.
In order to investigate the effect of specific parameter variations on the earlier established
UR-GSHP interactions, a parametric analysis was conducted. The analysis included two
sets of studies. The first group of studies considered different geometrical arrangements of
the systems, and the second group investigated the effect of altered operational
characteristics options on the interactions.
Overall the results suggested that the performance of a GSHP can be significantly improved
if the GHE array is installed near to the UR tunnel. It was shown that the improvement on the
GHEs average heat extraction rate due to the heat load from the UR tunnel can be high as ~
40%, depending on the size and shape of the GHE array and its proximity to the UR
tunnel(s). It was also concluded that if the design aim is to enhance the heat extraction rates
of urban GSHP systems, constructing the GHEs as close as possible to the UR tunnel would
be essential.
The results gathered from the parametric analysis were used to develop a formula. This
formula is one of the key contributions to knowledge from this research. The formula developed allows approximating the GHEs’ heat extraction improvements due to the nearby
tunnel(s) heat load(s). The formula makes use of a single variable named as interaction
proximity. This variable was found to be one of the key parameters impacting on UR-GSHP
interactions.
At the end of the thesis, conclusions are drawn concerning the thermal interactions of URs
with nearby vertical GHEs and the numerical modelling of such systems. Recommendations
for further research in this field are also suggested.

Year2017
PublisherLondon South Bank University
Digital Object Identifier (DOI)https://doi.org/10.18744/PUB.002071
Publication dates
Print01 May 2017
Publication process dates
Deposited13 Apr 2018
Publisher's version
License
Permalink -

https://openresearch.lsbu.ac.uk/item/86z85

Download files

  • 180
    total views
  • 149
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

Waste heat recovery from electrical substations
Davies, G., Roscoe Papini Lagoeiro, H., Revesz, A. and Maidment, G. Waste heat recovery from electrical substations. 2023 ASHRAE winter conference. Atlanta, Georgia, USA 04 - 08 Feb 2023
Heat Recovery Opportunities from Wastewater Treatment Plants
Roscoe Papini Lagoeiro, H., Davies, G., Revesz, A. and Maidment, G. (2023). Heat Recovery Opportunities from Wastewater Treatment Plants. 2023 ASHRAE winter conference. Atlanta, Georgia, USA 04 - 08 Feb 2023 American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
Evaluation of low temperature waste heat as a low carbon heat resource in the UK
G. Davies, H. Lagoeiro, H. Turnell, M. Wegner, A. Foster, J. Evans, A. Revesz, A. Leiper, K. Smyth, J. Hamilton, H. Cooke and G. Maidment (2023). Evaluation of low temperature waste heat as a low carbon heat resource in the UK. Applied Thermal Engineering. 232, p. 121283. https://doi.org/10.1016/j.applthermaleng.2023.121283
Meeting Net Zero Carbon Emission Targets: A case study tailored to local industry
De Almeida Marques, A., Turnell, H., Jones, P., Dunham, C., Fox, M., Revesz, A. and Maidment, G. (2023). Meeting Net Zero Carbon Emission Targets: A case study tailored to local industry. 2023 ASHRAE winter conference. Atlanta, Georgia, USA 04 - 08 Feb 2023
Low temperature waste heat sources data
Davies, G., Roscoe Papini Lagoeiro, H., Turnell, H., Wegner, M., Foster, A., Evans, J., Revesz, A., Leiper, A., Smyth, K., Hamilton, J., Cooke, H. and Maidment, G. (2022). Low temperature waste heat sources data. London South Bank University. https://doi.org/10.18744/lsbu.92wq6
A holistic design approach for 5th Generation Smart Local Energy systems: project GreenSCIES
Maidment, G., Revesz, A. and De Almeida Marques, A. (2021). A holistic design approach for 5th Generation Smart Local Energy systems: project GreenSCIES. Energy. 242, p. 122885. https://doi.org/10.1016/j.energy.2021.122885
Opportunities and challenges for Implementing Smart Local Energy Systems in Cities and Towns, demonstrated through case studies
Marques C., Dunham C., Jones P., Turnell H., Revesz, A. and Maidment, G. (2021). Opportunities and challenges for Implementing Smart Local Energy Systems in Cities and Towns, demonstrated through case studies. 2022 ASHRAE Winter Conference. Las Vegas, Nevada, USA 29 Jan - 02 Feb 2022
Combined benefits of cooling with heat recovery for electrical cable tunnels in cities
Wegner, M., Turnell, H., Davies, G., Revesz, A. and Maidment, G. (2021). Combined benefits of cooling with heat recovery for electrical cable tunnels in cities. Sustainable Cities and Society. 73 (103100). https://doi.org/10.1016/j.scs.2021.103100
Waste Heat Recovery from Underground Railways – Evaluating the Cooling Potential
Roscoe P.L.H., Revesz, A., Davies, G., Maidment, G., Gysin, K., Curry, D., Faulks, G., Murphy, D. and Vivian, J. (2021). Waste Heat Recovery from Underground Railways – Evaluating the Cooling Potential. CIBSE Technical Symposium 2021. Virtual online conference 13 - 14 Jul 2021 CIBSE.
Investigation of opportunities for utilising waste heat for district heating networks in cities
Wegner, M., Turnell, H., Davies, G., Revesz, A. and Maidment, G. (2021). Investigation of opportunities for utilising waste heat for district heating networks in cities. CIBSE Technical Symposium 2021. Virtual online conference 13 - 14 Jul 2021
Project SHOES: Secondary heat opportunities from electrical substations
Bowman, J., Revesz, A., Davies, G. and Maidment, G. (2020). Project SHOES: Secondary heat opportunities from electrical substations. ASHRAE 2020 Winter Conference. Orlando, Florida, USA 01 - 05 Feb 2020 American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
Integration of High Temperature Heat Networks with Low Carbon Ambient Loop Systems
Marques, C., Dunham, C., Jones, P., Matabuena, R., Revesz, A., Lagoeiro, H. and Maidment, G. (2020). Integration of High Temperature Heat Networks with Low Carbon Ambient Loop Systems. 2021 ASHRAE Winter Virtual Conference. Chicago 09 - 12 Feb 2021 American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
Initial assessment of a 5th generation district energy network in central London
Revesz, A., De Almeida Marques, A., Davies, G., Matabuena, R., Jones, P., Dunham, C. and Maidment, G. (2020). Initial assessment of a 5th generation district energy network in central London. ASHRAE Transactions. 126, pp. 491-499.
Assessing the performance of district heating networks utilising waste heat: A review
Lagoeiro, H, Revesz, A, Davies, G, Curry, D, Faulks, G, Murawa, M and Maidment, G (2020). Assessing the performance of district heating networks utilising waste heat: A review.
GreenSCIES – Green Smart Community Integrated Energy Systems – Integration with Data Centres
Marques, C., Tozer, R., Revesz, A., Dunham, C., Jones, P., Matabuena, R., Bond, C., Roscoe Papini Lagoeiro, H., Wegner, M., Davies, G. and Maidment, G. (2020). GreenSCIES – Green Smart Community Integrated Energy Systems – Integration with Data Centres. Institute of Refrigeration TechTalk Webinar. London 02 - 02 Apr 2020
Developing novel 5th generation district energy networks
Revesz, A., Jones, P., Dunham, C., Davies, G., Marques, C., Matabuena, R., Scott, J. and Maidment, G. (2020). Developing novel 5th generation district energy networks. Energy. 201, pp. 117389-117389. https://doi.org/10.1016/j.energy.2020.117389
Opportunities for integrating underground railways into low carbon urban energy networks: A review
Davies, G., Roscoe Papini Lagoeiro, H., Revesz, A., Maidment, G., Curry, D., Faulks, G. and Murawa, M. (2019). Opportunities for integrating underground railways into low carbon urban energy networks: A review. Applied Sciences. 9 (3332). https://doi.org/10.3390/app9163332
Waste heat recovery from urban electrical cable tunnels
Revesz, A., Davies, G., Maidment, G., Kuleszo, J., Liddiard, R., Altamirano, H., Davenport, A. and Yazadzhiyan, B. (2019). Waste heat recovery from urban electrical cable tunnels. The 25th IIR International Congress of Refrigeration. Montreal, Canada, 24 - 30 Aug 2019 International Institute of Refrigeration. https://doi.org/10.18462/iir.icr.2019.0495
Unchecked box Heat from Underground Energy London (Heat FUEL)
Davies, G., Roscoe Papini Lagoeiro, H., Revesz, A., Maidment, G., Curry, D., Faulks, G. and Bielicki, J. (2019). Unchecked box Heat from Underground Energy London (Heat FUEL). CIBSE Technical Symposium 2019. Sheffield, UK 25 - 26 Apr 2019
Heat from Underground Energy London (Heat FUEL)
Lagoeiro, H, Revesz, A, Davies, G, Maidment, G, Curry, D, Faulks, G and Bielicki, J (2019). Heat from Underground Energy London (Heat FUEL). CIBSE Technical Symposium. Sheffield, UK 25 - 26 Apr 2019
Cooling with heat recovery for electrical cable tunnels in cities
Davies, G, Revesz, A, Maidment, G, Davenport, A and Yazadzhiyan, B (2019). Cooling with heat recovery for electrical cable tunnels in cities. CIBSE Technical Symposium. Sheffield, UK 25 - 26 Apr 2019
Heat from Underground Energy London (Heat FUEL)
Roscoe Papini Lagoeiro, H., Curry, D, Faulks, G, Bielicki, J, Revesz, A, Davies, G. and Maidment, G (2019). Heat from Underground Energy London (Heat FUEL). IIR International Congress of Refrigeration. Montreal, Canada 24 - 30 Aug 2019 https://doi.org/10.18462/iir.icr.2019.1013
Heat Recovery Potential from Urban Underground Infrastructures
Davies, G, Boot-Handford, N, Grice, J, Dennis, W, Ajileye, A, Revesz, A and Maidment, GG (2018). Heat Recovery Potential from Urban Underground Infrastructures. ASHRAE Winter Conference. Chicago 20 - 24 Jan 2018 London South Bank University.
Performance Enhancement of Urban Ground Source Heat Pumps through Interactions with Underground Railway Tunnels
Revesz, A, Chaer, I, Thompson, J, Mavroulidou, M, Gunn, M and Maidment, GG (2018). Performance Enhancement of Urban Ground Source Heat Pumps through Interactions with Underground Railway Tunnels. Ashrae Winter Conference. Chicago 22 - 24 Jan 2018 London South Bank University.
Modelling of Heat Energy Recovery Potential form Underground Railways with Nearby Vertical Ground Heat Exchangers in an Urban Environment
Revesz, A, Chaer, I, Thompson, J, Mavroulidou, M, Gunn, M and Graeme, M (2018). Modelling of Heat Energy Recovery Potential form Underground Railways with Nearby Vertical Ground Heat Exchangers in an Urban Environment. Applied Thermal Engineering. 147, pp. 1059-1069. https://doi.org/10.1016/j.applthermaleng.2018.10.118
Combining cooling of underground railways with heat recovery and reuse
Davies, G., Boot-Handford, N, Curry, D, Dennis, W, Ajileye, A, Revesz, A and Maidment, G (2018). Combining cooling of underground railways with heat recovery and reuse. Sustainable Cities and Society. 45, pp. 543-552. https://doi.org/10.1016/j.scs.2018.11.045
Ground source heat pumps and their interactions with underground railway tunnels in an urban environment: A review
Revesz, A, Chaer, I, Thompson, J, Mavroulidou, M, Gunn, MJ and Maidment, GG (2015). Ground source heat pumps and their interactions with underground railway tunnels in an urban environment: A review. Applied Thermal Engineering. 93, pp. 147 - 154. https://doi.org/10.1016/j.applthermaleng.2015.09.011