Origins of ductile plasticity in a polycrystalline gallium arsenide during scratching: MD simulation study

Journal article


Fan, P., Goel, S., Luo, X., Yan, Y., Geng, Y. and He, Y. (2021). Origins of ductile plasticity in a polycrystalline gallium arsenide during scratching: MD simulation study. Applied Surface Science.
AuthorsFan, P., Goel, S., Luo, X., Yan, Y., Geng, Y. and He, Y.
Abstract

This paper used molecular dynamics simulation to obtain an improved understanding of the ductile plasticity in polycrystalline gallium arsenide (GaAs) during its nanoscratching. Velocity-controlled nanoscratching tests were performed with a diamond tool to study the friction-induced deformation behaviour of polycrystalline GaAs. Cutting temperature, sub-surface damage depth, cutting stresses, the evolution of dislocations and the subsequent microstructural changes were extracted from the simulation. The simulated MD data indicated that the deformation of polycrystalline GaAs is accompanied by dislocation nucleation in the grain boundary leading to the initiation of plastic deformation. Furthermore, a dual slip mechanism was observed as an important factor driving plasticity in poly GaAs in sharp contrast to a single GaAs. The magnitude of cutting forces and the extent of sub-surface damage were both observed to reduce with an increase in the scratch velocity whereas the cutting temperature scaled with the cutting velocity. As for the depth of the scratch, an increase in its magnitude increased the cutting forces, temperature and damage-depth. A phenomenon of fluctuation from wave crests to wave troughs in the cutting forces was observed only during the cutting of polycrystalline GaAs and not during the cutting of single-crystal GaAs.

KeywordsGaAs; MD simulation
Year2021
JournalApplied Surface Science
PublisherElsevier BV
ISSN0169-4332
Publication process dates
Accepted03 Mar 2021
Deposited17 Mar 2021
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8w3w5

Restricted files

Accepted author manuscript

  • 1
    total views
  • 1
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Influence of Tool Geometry and Process Parameters on the Properties of Friction Stir Spot Welded Multiple (AA 5754 H111) Aluminium Sheets
Labus Zlatanovic, D., Balos, S., Bergmann, J., Rasche, Stefan, Pecanac, M. and Goel, S. (2021). Influence of Tool Geometry and Process Parameters on the Properties of Friction Stir Spot Welded Multiple (AA 5754 H111) Aluminium Sheets. Materials. 14 (5), p. e1157. https://doi.org/10.3390/ma14051157
Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review.
Popov, V., Grilli, M., Koptyug, A., Jaworska, L., Katz-Demyanetz, A., Klobčar, D., Balos, S., Postolnyi, B. and Goel, S. (2021). Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review. Materials. 14 (4). https://doi.org/ma14040909
Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys.
Novák, P., Belezze, T., Cabibbo, M., Gamsjäger, Ernst, Wiessner, Manfred, Rajnovic, D., Jaworska, L., Hanus, P., Shishkin, A., Goel, G. and Goel, Saurav (2021). Solutions of Critical Raw Materials Issues Regarding Iron-Based Alloys. Materials. 14 (4). https://doi.org/ma14040899
Molecular dynamics simulation of AFM tip-based hot scratching of nanocrystalline GaAs
Fan, P., Goel, S., Luo, X., Yan, Y., Geng, Y., He, Y. and Wang, Y. (2021). Molecular dynamics simulation of AFM tip-based hot scratching of nanocrystalline GaAs. Materials Science in Semiconductor Processing.
In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding
Zlatanovi, D. L., Balos, S., Bergmann, J. P., Rasche, S., Zavašnik, J., Panchal, V., Sidjanin, L. and Goel, S. (2021). In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding. International Journal of Machine Tools and Manufacture.
Novel hybrid method to additively manufacture denser graphite structures using Binder Jetting.
Popov, V., Fleisher, A., Muller-Kamskii, G., Shishkin, A., Katz-Demyanetz, A., Travitzky, N. and Goel, S. (2021). Novel hybrid method to additively manufacture denser graphite structures using Binder Jetting. Scientific Reports. 11 (1), p. 2438. https://doi.org/10.1038/s41598-021-81861-w
Using circular economy principles to recycle materials in guiding the design of a wet scrubber-reactor for indoor air disinfection from coronavirus and other pathogens.
Shishkin, A., Goel, G., Baronins, J., Ozolins, J., Hoskins, C. and Goel, S. (2021). Using circular economy principles to recycle materials in guiding the design of a wet scrubber-reactor for indoor air disinfection from coronavirus and other pathogens. Environmental technology & innovation. 22, p. 101429. https://doi.org/10.1016/j.eti.2021.101429
Bactericidal Surfaces: An Emerging 21st Century Ultra-Precision Manufacturing and Materials Puzzle
Larrañaga-Altuna, M., Zabala, A., Llavori, I., Pearce, O., Nguyen, D.T., Caro, J., Mescheder, H., Endrino, J.L., Goel, G., Ayre, W.N., Seenivasagam, R.K., Tripathy, D.K., Armstrong, J. and Goel, S. (2021). Bactericidal Surfaces: An Emerging 21st Century Ultra-Precision Manufacturing and Materials Puzzle . Applied Physics Reviews. 8 (021303). https://doi.org/10.1063/5.0028844
An atomistic investigation on the wear of diamond during atomic force microscope tip-based nanomachining of Gallium Arsenide
Fan, P., Goel, S., Luo, X., Yan, Y., Geng, Y. and Wang, Y. (2020). An atomistic investigation on the wear of diamond during atomic force microscope tip-based nanomachining of Gallium Arsenide. Computational Materials Science. 187, p. 110115. https://doi.org/10.1016/j.commatsci.2020.110115
New insights into the methods for predicting ground surface roughness in the age of digitalisation
Yuhang, P., Ping, Z., Ying, Y., Anupam, A., Yonghao, W., Dongming, G. and Goel, S. (2020). New insights into the methods for predicting ground surface roughness in the age of digitalisation. Precision Engineering. 67, pp. 393-418. https://doi.org/10.1016/j.precisioneng.2020.11.001
Horizons of modern molecular dynamics simulation in digitalised solid freeform fabrication with advanced materials
Goel, S., Knaggs, M., Goel, G., Zhou, X. W., Upadhyaya, H.M., Thakur, V. F., Kumar, V., Bizarri, G., Tiwari, A., Murphy, A., Stukowskii, A. and Matthewsj, A. (2020). Horizons of modern molecular dynamics simulation in digitalised solid freeform fabrication with advanced materials. Materials Today Chemistry. 18, p. 100356. https://doi.org/10.1016/j.mtchem.2020.100356
Nanomaterials based Biosensing: Methods and principle of detection
Kumar, N., Goel, G. and Goel, S. (2020). Nanomaterials based Biosensing: Methods and principle of detection. in: Joshi SN and Chandra P (ed.) Advanced Micro and Nano Manufacturing Technologies - Applications in Biochemical and Biomedical Engineering Springer Nature.
Surface Defect incorporated Diamond Machining of Silicon
Khatri, N., Barkachary, B.M., Muneeswaran, B/, Al-Sayegh, R., Luo, X. and Goel, S. (2020). Surface Defect incorporated Diamond Machining of Silicon. Int J of Extreme Manufacturing. 2 (4). https://doi.org/10.1088/2631-7990/abab4a
Distribution of shallow NV centers in diamond revealed by photoluminescence spectroscopy and nanomachining
Jadidi, M.F., Ozer, H.O., Goel, S, Kilpatrick, J.I., McEvoy, N., McCloskey, D., Donegan, J.F. and Cross, G.L.W. (2020). Distribution of shallow NV centers in diamond revealed by photoluminescence spectroscopy and nanomachining. Carbon. 167, pp. 114-121. https://doi.org/10.1016/j.carbon.2020.04.086
Elastic recovery of monocrystalline silicon during ultra-fine rotational grinding
Huang, N., Yan, Y., Zhou, P., Kang, R., Guo, D. and Goel, S. (2020). Elastic recovery of monocrystalline silicon during ultra-fine rotational grinding. Precision Engineering. 65, pp. 64-71. https://doi.org/10.1016/j.precisioneng.2020.05.004
Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic
Goel, S., Hawi, S., Goel, G., Thakur, V.K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H., Cross, G. and Barber, A. (2020). Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2020.100300
The Critical Raw Materials in Cutting Tools for Machining Applications: A Review
Goel, S. (2020). The Critical Raw Materials in Cutting Tools for Machining Applications: A Review. Materials MDPI. 13 (1377). https://doi.org/10.3390/ma13061377
An experimental study on lap joining of multiple sheets of aluminium alloy (AA 5754) using friction stir spot welding
Goel, S., Zlatanovic DL and Balos S (2020). An experimental study on lap joining of multiple sheets of aluminium alloy (AA 5754) using friction stir spot welding. International Journal of Advanced Manufacturing Technology. 107, pp. 3093-3107. https://doi.org/10.1007/s00170-020-05214-z
Towards an improved understanding of plasticity, friction and wear mechanisms in precipitate containing AZ91 Mg alloy
Kumar D, Goel, S., Gosvami N and Jain J (2020). Towards an improved understanding of plasticity, friction and wear mechanisms in precipitate containing AZ91 Mg alloy. Materialia. 10, p. 100640. https://doi.org/10.1016/j.mtla.2020.100640
Functional evaluation and testing of a newly developed Teleost’s Fish Otolith derived biocomposite coating for healthcare
Goel, S, Montanez, N. D., Carreno, H., Escobar, P., Estupinan, H. A., Pena, D. Y. and Endrino, J. L. (2020). Functional evaluation and testing of a newly developed Teleost’s Fish Otolith derived biocomposite coating for healthcare. Scientific Reports. 10 (1), pp. 1-16. https://doi.org/10.1038/s41598-019-57128-w
Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems
Daminabo, S. C., Goel, S, Grammatikos, S. A., Nezhad, H. Y. and Thakur, V. K. (2020). Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Materials Today Chemistry. 16, p. 100248. https://doi.org/10.1016/j.mtchem.2020.100248
On the Use of the Theory of Critical Distances with Mesh Control for Fretting Fatigue Lifetime Assessment
Zabala, A., Infante-Garcia, Giner, E., Goel, S., Endrino, J.L. and Llavori, I. (2020). On the Use of the Theory of Critical Distances with Mesh Control for Fretting Fatigue Lifetime Assessment . Tribology International. 142, p. 105985. https://doi.org/https://doi.org/10.1016/j.triboint.2019.105985
Fabrication of functionalised surfaces on Gum metal (Ti-30Nb) using micromachining
Hawi, S., Dickins, A., Pardal, G.R., Giusca, C., Pearce, O. and Goel, S. (2019). Fabrication of functionalised surfaces on Gum metal (Ti-30Nb) using micromachining . euspen’s 19th International Conference & Exhibition, Bilbao, ES, June 2019. Bilbao 03 - 07 Jun 2019 EUSPEN.
Suppressing the Use of Critical Raw Materials in Joining of AISI 304 Stainless Steel Using Activated Tungsten Inert Gas Welding
Balos, S., Dramicanin, M., Janjatovic, P., Zabunov, I., Pilic, B., Goel, S. and Szutkowska, M. (2019). Suppressing the Use of Critical Raw Materials in Joining of AISI 304 Stainless Steel Using Activated Tungsten Inert Gas Welding. Metals. 9 (11), p. 1187. https://doi.org/https://doi.org/10.3390/met9111187
The role of high-pressure coolant in the wear characteristics of WC-Co tools during the cutting of Ti–6Al–4V
Stolf, P., Paiva, J.M., Ahmed, Y.S., Endrina, J.L., Goel, S. and Veldhuis, S.C. (2019). The role of high-pressure coolant in the wear characteristics of WC-Co tools during the cutting of Ti–6Al–4V. Wear. 440-441, p. 203090. https://doi.org/10.1016/j.wear.2019.203090
The importance of wavelength for tight temperature control during µ-laser assisted machining
Dennis A, Goel, S., Al-Sayegh, R. and Neill W. O. (2019). The importance of wavelength for tight temperature control during µ-laser assisted machining . Journal of Micromanufacturing. https://doi.org/10.1177/2516598420917866
Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius and crystal orientation
Beake B and Goel, S. (2018). Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius and crystal orientation. International Journal of Refractory Metals and Hard Materials. 75, pp. 63-69. https://doi.org/https://doi.org/10.1016/j.ijrmhm.2018.03.020
Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten
Goel, S., Cross, G., Stukowski, A., Gamsjager, E., Beake, B. and Agrawal, A. (2018). Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten. Computational Materials Science. 152, pp. 196-210. https://doi.org/https://doi.org/10.1016/j.commatsci.2018.04.044