FDM-based Additive Manufacturing (3D Printing): Techniques for Polymer Material Systems

Journal article


Goel, S, Daminabo, S. C., Grammatikos, S. A., Nezhad, H. Y. and Thakur, V. K. (2020). FDM-based Additive Manufacturing (3D Printing): Techniques for Polymer Material Systems. Materials Today Chemistry.
AuthorsGoel, S, Daminabo, S. C., Grammatikos, S. A., Nezhad, H. Y. and Thakur, V. K.
Abstract

While the developments of additive manufacturing (AM) techniques have been remarkable thus far, they are still significantly limited by the range of printable, functional material systems that meet the requirements of a broad range of industries; including the healthcare, manufacturing, packaging, aerospace and automotive industries. Furthermore, with the rising demand for sustainable developments, this review broadly gives the reader a good overview of existing AM techniques; with more focus on the extrusion-based technologies (Fused Deposition Modelling and Direct Ink Writing) due to their scalability, cost-efficiency and wider range of material processability. It then goes on to identify the innovative materials and recent research activities that may support the sustainable development of extrusion-based techniques for functional and multifunctional (4D printing) part and product fabrication.

Keywords3D printing; Additive manufacturing (AM); Multifunctional materials systems ; Fused deposition modelling; sustainable ; Polymer-based composites
Year2020
JournalMaterials Today Chemistry
PublisherElsevier
ISSN2468-5194
Publication process dates
Accepted21 Jan 2020
Deposited21 Jan 2020
Accepted author manuscript
License
CC BY-NC 4.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/88x86

Accepted author manuscript

  • 105
    total views
  • 1
    total downloads
  • 102
    views this month
  • 0
    downloads this month

Related outputs

Functional evaluation and testing of a newly developed Teleost’s Fish Otolith derived biocomposite coating for healthcare
Goel, S, Montanez, N. D., Carreno, H., Escobar, P., Estupinan, H. A., Pena, D. Y. and Endrino, J. L. (2020). Functional evaluation and testing of a newly developed Teleost’s Fish Otolith derived biocomposite coating for healthcare. Scientific Reports. 10 (1), pp. 1-16.
On the Use of the Theory of Critical Distances with Mesh Control for Fretting Fatigue Lifetime Assessment
Zabala, A., Infante-Garcia, Giner, E., Goel, S., Endrino, J.L. and Llavori, I. (2020). On the Use of the Theory of Critical Distances with Mesh Control for Fretting Fatigue Lifetime Assessment . Tribology International. 142, p. 105985.
Fabrication of functionalised surfaces on Gum metal (Ti-30Nb) using micromachining
Hawi, S., Dickins, A., Pardal, G.R., Giusca, C., Pearce, O. and Goel, S. (2019). Fabrication of functionalised surfaces on Gum metal (Ti-30Nb) using micromachining . euspen’s 19th International Conference & Exhibition, Bilbao, ES, June 2019. Bilbao 03 - 07 Jun 2019 EUSPEN.
Suppressing the Use of Critical Raw Materials in Joining of AISI 304 Stainless Steel Using Activated Tungsten Inert Gas Welding
Balos, S., Dramicanin, M., Janjatovic, P., Zabunov, I., Pilic, B., Goel, S. and Szutkowska, M. (2019). Suppressing the Use of Critical Raw Materials in Joining of AISI 304 Stainless Steel Using Activated Tungsten Inert Gas Welding. Metals. 9 (11), p. 1187.
The role of high-pressure coolant in the wear characteristics of WC-Co tools during the cutting of Ti–6Al–4V
Stolf, P., Paiva, J.M., Ahmed, Y.S., Endrina, J.L., Goel, S. and Veldhuis, S.C. (2019). The role of high-pressure coolant in the wear characteristics of WC-Co tools during the cutting of Ti–6Al–4V. Wear. 440-441, p. 203090.
The importance of wavelength for tight temperature control during µ-laser assisted machining
Dennis A, Goel, S. and Al-Sayegh, R. (2019). The importance of wavelength for tight temperature control during µ-laser assisted machining . Journal of Micromanufacturing.
Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius and crystal orientation
Beake B and Goel, S. (2018). Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius and crystal orientation. International Journal of Refractory Metals and Hard Materials. 75, pp. 63-69.
Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten
Goel, S., Cross, G., Stukowski, A., Gamsjager, E., Beake, B. and Agrawal, A. (2018). Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten. Computational Materials Science. 152, pp. 196-210.