Graphene nanoplatelets/Barium titanate Polymer Nanocomposite Fibril: A Remanufactured Multifunctional Material with Unprecedented Electrical, Thermomechanical and Electromagnetic Properties
Journal article
Mishra, R., Goel, S., Chianella, I. and Nezhad, H. (2023). Graphene nanoplatelets/Barium titanate Polymer Nanocomposite Fibril: A Remanufactured Multifunctional Material with Unprecedented Electrical, Thermomechanical and Electromagnetic Properties. Advanced Sustainable Systems. https://doi.org/10.1002/adsu.202300177
Authors | Mishra, R., Goel, S., Chianella, I. and Nezhad, H. |
---|---|
Abstract | Through this paper, we introduce a novel, zero-waste, and recycling plastic waste solution which is fully scalable to produce Graphene nanoplatelets/Barium titanate (GNP/BaTiO3) Polymer Nanocomposite Fibrils that can be used in a myriad of engineering applications. We performed a detailed investigation to systematically evaluate the compatible and non-compatible recycled polypropylene (PP)/Polyethylene terephthalate (PET) blends in combination with functional (electrical, piezoelectric and dielectric) materials for in-situ fibril production. The nanocomposite fibrils made from recycled polypropylene, polyethylene terephthalate, and GNPs/BaTiO3 with high aspect-ratio disparity (400:1) were produced with added value in terms of significantly enhanced electrical, thermomechanical, and electromagnetic interference shielding characteristics. Single screw extrusion was utilized to fabricate the nanocomposite fibrils with the in-situ fibril morphology of polyethylene terephthalate and GNPs/BaTiO3 exhibiting improved electrical conductivity. It was demonstrated that such fibril morphology would restrict the chain mobility of polymer molecules, which ultimately benefited improved viscosity and strain energy. Moreover, the study demonstrated a positive reinforcement effect from the utilization of polyethylene terephthalate fibrils and GNPs/BaTiO3 in a polypropylene matrix, dominated by the high aspect ratio, stiffness, and thermal stability of GNPs/BaTiO3. Furthermore, it was observed that the mechanical properties and tension-bearing capacity of the polypropylene were significantly improved by the incorporation of the in-situ fibril polyethylene terephthalate. The study also demonstrated that the protection of the remanufactured nanocomposites against electromagnetic interference has been significantly improved with the increasing GNPs/BaTiO3 content and the morphological transition from spherical to fibril-shaped polyethylene terephthalate. |
Keywords | BaTiO3; Graphene; Composite; Fibril |
Year | 2023 |
Journal | Advanced Sustainable Systems |
Publisher | Wiley |
ISSN | 2366-7486 |
Digital Object Identifier (DOI) | https://doi.org/10.1002/adsu.202300177 |
Web address (URL) | https://onlinelibrary.wiley.com/journal/23667486 |
Publication dates | |
25 Sep 2023 | |
Publication process dates | |
Accepted | 14 Aug 2023 |
Deposited | 17 Aug 2023 |
Publisher's version | License File Access Level Open |
Accepted author manuscript | License File Access Level Controlled |
https://openresearch.lsbu.ac.uk/item/94v10
Download files
Publisher's version
Advanced Sustainable Systems - 2023 - Mishra - Graphene Nanoplatelets Barium Titanate Polymer Nanocomposite Fibril A (1).pdf | ||
License: CC BY 4.0 | ||
File access level: Open |
84
total views16
total downloads0
views this month0
downloads this month