The dynamic excitation of a granular chain for biomedical ultrasound applications: contact mechanics finite element analysis and validation
Journal article
Gelat, P., Yang, J., Thomas, P.J., Hutchins, D.A., Akanji, O., Davis, L.A.J., Freear, S., Harput, S. and Saffari, N. (2016). The dynamic excitation of a granular chain for biomedical ultrasound applications: contact mechanics finite element analysis and validation. Journal of Physics: Conference Series. 684 (1). https://doi.org/10.1088/1742-6596/684/1/012005
Authors | Gelat, P., Yang, J., Thomas, P.J., Hutchins, D.A., Akanji, O., Davis, L.A.J., Freear, S., Harput, S. and Saffari, N. |
---|---|
Abstract | There has been recent interest in the transmission of acoustic signals along granular chains of spherical beads to produce waveforms of relevance to biomedical ultrasound applications. Hertzian contact between adjacent beads can introduce different harmonic content into the signal as it propagates. This transduction mechanism has the potential to be of use in both diagnostic and therapeutic ultrasound applications, and is the object of the study presented here. Although discrete dynamics models of this behaviour exist, a more comprehensive solution must be sought if changes in shape and deformation of individual beads are to be considered. Thus, the finite element method was used to investigate the dynamics of a granular chain of six, 1 mm diameter chrome steel spherical beads excited at one end using a sinusoidal displacement signal at 73 kHz. Output from this model was compared with the solution provided by the discrete dynamics model, and good overall agreement obtained. In addition, it was able to resolve the complex dynamics of the granular chain, including the multiple collisions which occur. It was demonstrated that under dynamic excitation conditions, the inability of discrete mechanics models to account for elastic deformation of the beads when these lose contact, could lead to discrepancies with experimental observations. |
Year | 2016 |
Journal | Journal of Physics: Conference Series |
Journal citation | 684 (1) |
Publisher | IOP Publishing |
Digital Object Identifier (DOI) | https://doi.org/10.1088/1742-6596/684/1/012005 |
Web address (URL) | https://iopscience.iop.org/article/10.1088/1742-6596/684/1/012005 |
Publication dates | |
Online | 05 Feb 2016 |
Publication process dates | |
Accepted | 05 Jan 2016 |
Submitted | 13 Aug 2019 |
Publisher's version | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/87x8y
Download files
Publisher's version
Gélat_2016_J._Phys.__Conf._Ser._684_012005.pdf | ||
License: CC BY 3.0 | ||
File access level: Open |
100
total views54
total downloads0
views this month0
downloads this month