Composite 3D printing of biomimetic human teeth

Journal article


Barber, A. H., Cresswell-Boyes, A. J., Davies, G. R., Krishnamoorthy, M. and Mills, D. (2022). Composite 3D printing of biomimetic human teeth. Scientific Reports. 12 (7830), pp. 1-11. https://doi.org/10.1038/s41598-022-11658-y
AuthorsBarber, A. H., Cresswell-Boyes, A. J., Davies, G. R., Krishnamoorthy, M. and Mills, D.
Abstract

Human teeth are mechanically robust through a complex structural composite organisation of materials and morphology. Efforts to replicate mechanical function in artificial teeth (typodont teeth), such as in dental training applications, attempt to replicate the structure and morphology of real teeth but lack tactile similarities during mechanical cutting of the teeth. In this study, biomimetic typodont teeth, with morphology derived from X‐ray microtomography scans of extracted teeth, were 3D printed using an approach to develop novel composites. These composites with a range of glass, hydroxyapatite and porcelain reinforcements within a methacrylate‐based photopolymer resin were compared to six commercial artificial typodont teeth. Mechanical performance of the extracted human teeth and 3D printed typodont teeth were evaluated using a haptic approach of measuring applied cutting forces. Results indicate 3D printed typodont teeth replicating enamel and dentine can be mechanically comparable to extracted human teeth despite the material compositions differing from the materials found in human teeth. A multiple parameter variable of material elastic modulus and hardness is shown to describe the haptic response when cutting through both human and biomimetic, highlighting a critical dependence between the ratio of material mechanical properties and not absolute material properties in determining tooth mechanical performance under the action of cutting forces.

KeywordsBiomimetics; 3D printing; Manufacturing; Teeth; Bioengineering; Mechanics
Year2022
JournalScientific Reports
Journal citation12 (7830), pp. 1-11
PublisherSpringer
ISSN2045-2322
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-022-11658-y
Web address (URL)https://www.nature.com/articles/s41598-022-11658-y
Publication dates
Print12 May 2022
Publication process dates
Accepted13 Apr 2022
Deposited14 Jun 2022
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/8zy12

Download files


Publisher's version
c7fd20fa-0928-4bd1-9e2a-bb3b4d221575.pdf
License: CC BY 4.0
File access level: Open

  • 97
    total views
  • 50
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Modal analysis of novel coronavirus (SARS COV-2) using finite element methodology
Warsame, C., Valerini, D., Llavori, I., Barber, A. and Goel, S. (2022). Modal analysis of novel coronavirus (SARS COV-2) using finite element methodology. Journal of the Mechanical Behavior of Biomedical Materials. 135, p. 105406. https://doi.org/10.1016/j.jmbbm.2022.105406
Biomimetic generation of the strongest known biomaterial found in limpet tooth.
Rumney, R., Robson, S., Kao, A., Barbu, E., Bozycki, L., Smith, J., Cragg, S., Couceiro, F., Parwani, R., Tozzi, G., Stuer, M., Barber, Asa H, Ford, A. and Górecki, D. (2022). Biomimetic generation of the strongest known biomaterial found in limpet tooth. Nature Communications. 13 (1), p. 3753. https://doi.org/10.1038/s41467-022-31139-0
X-ray computed tomography evaluations of additive manufactured multimaterial composites.
Curto, M., Kao, A P, Keeble, W, Tozzi, G. and Barber, A H (2021). X-ray computed tomography evaluations of additive manufactured multimaterial composites. Journal of Microscopy. https://doi.org/10.1111/jmi.13034
Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic
Goel, S., Hawi, S., Goel, G., Thakur, V.K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H., Cross, G. and Barber, A. (2020). Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2020.100300
Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model
Peña Fernández, M., Dall’Ara, Enrico, Bodey, Andrew J., Parwani, Rachna, Barber, A., Blunn, Gordon W. and Tozzi, G. (2019). Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model. ACS Biomaterials Science & Engineering. 5 (5), pp. 2543-2554. https://doi.org/10.1021/acsbiomaterials.8b01044
Seismo‐Mechanical Response of Anisotropic Rocks Under Hydraulic Fracture Conditions: New Experimental Insights
Gehne, S., Benson, P., Koor, N., Dobson, K., Enfield, M. and Barber, A. (2019). Seismo‐Mechanical Response of Anisotropic Rocks Under Hydraulic Fracture Conditions: New Experimental Insights. Journal of Geophysical Research: Solid Earth. 124 (9), pp. 9562-9579. https://doi.org/10.1029/2019jb017342
Structural orientation dependent sub-lamellar bone mechanics
Jimenez-Palomar, I, Shipov, A, Shahar, R and Barber, AH (2015). Structural orientation dependent sub-lamellar bone mechanics. Journal of the Mechanical Behavior of Biomedical Materials. 52, pp. 63-71. https://doi.org/10.1016/j.jmbbm.2015.02.031
Microscopy and supporting data for osteoblast integration within an electrospun fibrous network
Stachewicz, U, Qiao, T, Rawlinson, SCF, Veiga Almeida, F, Li, W-Q, Cattell, M and Barber, AH (2015). Microscopy and supporting data for osteoblast integration within an electrospun fibrous network. Data in Brief. 5, pp. 775-781. https://doi.org/10.1016/j.dib.2015.10.009
3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration
Stachewicz, U, Qiao, T, Rawlinson, SCF, Almeida, FV, Li, W-Q, Cattell, M and Barber, AH (2015). 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomaterialia. 27, pp. 88-100. https://doi.org/10.1016/j.actbio.2015.09.003
The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes
Almeida, FV, Walko, G, McMillan, JR, McGrath, JA, Wiche, G, Barber, AH and Connelly, JT (2015). The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes. Journal of Cell Science. 128 (24), pp. 4475-4486. https://doi.org/10.1242/jcs.173435
3D nanomechanical evaluations of dermal structures in skin
Kao, AP, Connelly, JT and Barber, AH (2015). 3D nanomechanical evaluations of dermal structures in skin. Journal of the Mechanical Behavior of Biomedical Materials. 57, pp. 14-23. https://doi.org/10.1016/j.jmbbm.2015.11.017
Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone
Hang, F, Gupta, HS and Barber, AH (2013). Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone. Journal of The Royal Society Interface. 11 (92), pp. 20130993-20130993. https://doi.org/10.1098/rsif.2013.0993
Adhesion Anisotropy between Contacting Electrospun Fibers
Stachewicz, U, Hang, F and Barber, AH (2014). Adhesion Anisotropy between Contacting Electrospun Fibers. Langmuir. 30 (23), pp. 6819-6825. https://doi.org/10.1021/la5004337
Polarised infrared microspectroscopy of edge-oriented graphene oxide papers
Frogley, MD, Wang, C, Cinque, G and Barber, AH (2014). Polarised infrared microspectroscopy of edge-oriented graphene oxide papers. Vibrational Spectroscopy. 75, pp. 178-183. https://doi.org/10.1016/j.vibspec.2014.07.005
Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy
Wang, C, Frogley, MD, Cinque, G, Liu, L-Q and Barber, AH (2014). Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy. Nanoscale. 6 (23), pp. 14404-14411. https://doi.org/10.1039/C4NR03646H
Mechanical Behavior of Osteoporotic Bone at Sub-Lamellar Length Scales
Jimenez-Palomar, I, Shipov, A, Shahar, R and Barber, AH (2015). Mechanical Behavior of Osteoporotic Bone at Sub-Lamellar Length Scales. Frontiers in Materials. 2. https://doi.org/10.3389/fmats.2015.00009
Extreme strength observed in limpet teeth
Barber, AH, Lu, D and Pugno, NM (2015). Extreme strength observed in limpet teeth. Journal of The Royal Society Interface. 12 (105), pp. 20141326-20141326. https://doi.org/10.1098/rsif.2014.1326
Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks
Stachewicz, U, Bailey, RJ, Zhang, H, Stone, CA, Willis, CR and Barber, AH (2015). Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks. ACS applied materials & interfaces. 7 (30), pp. 16645-16652. https://doi.org/10.1021/acsami.5b04272
Hydration dependent mechanical performance of denture adhesive hydrogels
Zhang, F, An, Y, Roohpour, N, Barber, AH and Gautrot, JE (2018). Hydration dependent mechanical performance of denture adhesive hydrogels. Dental Materials. 34 (10), pp. 1440-1448. https://doi.org/10.1016/j.dental.2018.06.015
Approaches to 3D printing teeth from X-ray microtomography.
Cresswell-Boyes, AJ, Barber, AH, Mills, D, Tatla, A and Davis, GR (2018). Approaches to 3D printing teeth from X-ray microtomography. Journal of Microscopy. 272 (3), pp. 207-212. https://doi.org/10.1111/jmi.12725
Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems.
Peña Fernández, M, Barber, AH, Blunn, GW and Tozzi, G (2018). Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. Journal of Microscopy. 272 (3), pp. 213-272. https://doi.org/10.1111/jmi.12745
Development of sustainable biodegradable lignocellulosic hemp fiber/ polycaprolactone biocomposites for light weight applications
Barber, AH, Dhakal, HN, Ismail, S, Zhang, Z, Welsh, E, Maigret, J-E and Beaugrand, J (2018). Development of sustainable biodegradable lignocellulosic hemp fiber/ polycaprolactone biocomposites for light weight applications. Composites Part A: Applied Science and Manufacturing. 113, pp. 350-358. https://doi.org/10.1016/j.compositesa.2018.08.005
Preservation of bone tissue integrity with temperature control for in situ SR-MicroCT experiments
Fernández, MP, Dall'Ara, E, Kao, AP, Bodey, AJ, Karali, A, Blunn, GW, Barber, AH and Tozzi, G (2018). Preservation of bone tissue integrity with temperature control for in situ SR-MicroCT experiments. Materials. 11 (11). https://doi.org/10.3390/ma11112155
Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation
Peña Fernández, M, Cipiccia, S, Dall'Ara, E, Bodey, AJ, Parwani, R, Pani, M, Blunn, GW, Barber, AH and Tozzi, G (2018). Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. Journal of the Mechanical Behavior of Biomedical Materials. 88, pp. 109-119. https://doi.org/10.1016/j.jmbbm.2018.08.012
Micro-mechanical properties of the tendon-to-bone attachment
Deymier, AC, An, Y, Boyle, JJ, Schwartz, AG, Birman, V, Genin, GM, Thomopoulos, S and Barber, AH (2017). Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomaterialia. 56, pp. 25-35. https://doi.org/10.1016/j.actbio.2017.01.037
Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities
Stachewicz, U, Dijksman, JF, Soudani, C, Tunnicliffe, LB, Busfield, JJC and Barber, AH (2017). Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities. European Polymer Journal. 91, pp. 368-375. https://doi.org/10.1016/j.eurpolymj.2017.04.017
Extreme Toughness Exhibited in Electrospun Polystyrene Fibers
Zhang, F and Barber, AH (2017). Extreme Toughness Exhibited in Electrospun Polystyrene Fibers. Macromolecular Materials and Engineering. 302 (9), pp. 1700084-1700084. https://doi.org/10.1002/mame.201700084
X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles
Zhang, G, Parwani, R, Stone, CA, Barber, AH and Botto, L (2017). X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles. Langmuir. 33 (43), pp. 12072-12079. https://doi.org/10.1021/acs.langmuir.7b02982
Stress concentrations in nanoscale defective graphene
Wang, C, Wang, J and Barber, AH (2017). Stress concentrations in nanoscale defective graphene. AIP Advances. 7 (11), pp. 115001-115001. https://doi.org/10.1063/1.4996387
Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility
Theocharidis, G, Drymoussi, Z, Kao, AP, Barber, AH, Lee, DA, Braun, KM and Connelly, JT (2016). Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility. Journal of Investigative Dermatology. 136 (1), pp. 74-83. https://doi.org/10.1038/JID.2015.352
Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach
Anssari-Benam, A, Barber, AH and Bucchi, A (2016). Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach. Journal of Materials Science: Materials in Medicine. 27 (2). https://doi.org/10.1007/s10856-015-5657-2
Failure mechanisms in denture adhesives
An, Y, Li, D, Roohpour, N, Gautrot, JE and Barber, AH (2016). Failure mechanisms in denture adhesives. Dental Materials. 32 (5), pp. 615-623. https://doi.org/10.1016/j.dental.2016.01.007
Morphological and Mechanical Biomimetic Bone Structures
Parwani, R, Curto, M, Kao, AP, Rowley, PJ, Pani, M, Tozzi, G and Barber, AH (2016). Morphological and Mechanical Biomimetic Bone Structures. ACS Biomaterials Science & Engineering. 3 (11), pp. 2761-2767. https://doi.org/10.1021/acsbiomaterials.6b00652