The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes

Journal article


Almeida, FV, Walko, G, McMillan, JR, McGrath, JA, Wiche, G, Barber, AH and Connelly, JT (2015). The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes. Journal of Cell Science. 128 (24), pp. 4475-4486.
AuthorsAlmeida, FV, Walko, G, McMillan, JR, McGrath, JA, Wiche, G, Barber, AH and Connelly, JT
Abstract

The transmission of mechanical forces to the nucleus is important for intracellular positioning, mitosis and cell motility, yet the contribution of specific components of the cytoskeleton to nuclear mechanotransduction remains unclear. In this study, we examine how crosstalk between the cytolinker plectin and F-actin controls keratin network organisation and the 3D nuclear morphology of keratinocytes. Using micro-patterned surfaces to precisely manipulate cell shape, we find that cell adhesion and spreading regulate the size and shape of the nucleus. Disruption of the keratin cytoskeleton through loss of plectin facilitated greater nuclear deformation, which depended on acto-myosin contractility. Nuclear morphology did not depend on direct linkage of the keratin cytoskeleton with the nuclear membrane, rather loss of plectin reduced keratin filament density around the nucleus. We further demonstrate that keratinocytes have abnormal nuclear morphologies in the epidermis of plectin-deficient, epidermolysis bullosa simplex patients. Taken together, our data demonstrate that plectin is an essential regulator of nuclear morphology in vitro and in vivo and protects the nucleus from mechanical deformation.

KeywordsSkin; Mechanotransduction; Bioengineering; Imaging; Cell mechanics; 06 Biological Sciences; 11 Medical And Health Sciences; Developmental Biology
Year2015
JournalJournal of Cell Science
Journal citation128 (24), pp. 4475-4486
ISSN0021-9533
Digital Object Identifier (DOI)doi:10.1242/jcs.173435
Publication dates
Print02 Nov 2015
Publication process dates
Deposited21 Aug 2018
Accepted26 Oct 2015
Publisher's version
License
CC BY 4.0
Permalink -

https://openresearch.lsbu.ac.uk/item/875qz

  • 2
    total views
  • 24
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Related outputs

Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation
Peña Fernández, M, Cipiccia, S, Dall'Ara, E, Bodey, AJ, Parwani, R, Pani, M, Blunn, GW, Barber, AH and Tozzi, G (2018). Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. Journal of the Mechanical Behavior of Biomedical Materials. 88, pp. 109-119.
Preservation of bone tissue integrity with temperature control for in situ SR-MicroCT experiments
Fernández, MP, Dall'Ara, E, Kao, AP, Bodey, AJ, Karali, A, Blunn, GW, Barber, AH and Tozzi, G (2018). Preservation of bone tissue integrity with temperature control for in situ SR-MicroCT experiments. Materials. 11 (11).
Hydration dependent mechanical performance of denture adhesive hydrogels
Zhang, F, An, Y, Roohpour, N, Barber, AH and Gautrot, JE (2018). Hydration dependent mechanical performance of denture adhesive hydrogels. Dental Materials. 34 (10), pp. 1440-1448.
Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility
Theocharidis, G, Drymoussi, Z, Kao, AP, Barber, AH, Lee, DA, Braun, KM and Connelly, JT (2016). Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility. Journal of Investigative Dermatology. 136 (1), pp. 74-83.
Extreme Toughness Exhibited in Electrospun Polystyrene Fibers
Zhang, F and Barber, AH (2017). Extreme Toughness Exhibited in Electrospun Polystyrene Fibers. Macromolecular Materials and Engineering. 302 (9), pp. 1700084-1700084.
Structural orientation dependent sub-lamellar bone mechanics
Jimenez-Palomar, I, Shipov, A, Shahar, R and Barber, AH (2015). Structural orientation dependent sub-lamellar bone mechanics. Journal of the Mechanical Behavior of Biomedical Materials. 52, pp. 63-71.
Microscopy and supporting data for osteoblast integration within an electrospun fibrous network
Stachewicz, U, Qiao, T, Rawlinson, SCF, Veiga Almeida, F, Li, W-Q, Cattell, M and Barber, AH (2015). Microscopy and supporting data for osteoblast integration within an electrospun fibrous network. Data in Brief. 5, pp. 775-781.
3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration
Stachewicz, U, Qiao, T, Rawlinson, SCF, Almeida, FV, Li, W-Q, Cattell, M and Barber, AH (2015). 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomaterialia. 27, pp. 88-100.
3D nanomechanical evaluations of dermal structures in skin
Kao, AP, Connelly, JT and Barber, AH (2015). 3D nanomechanical evaluations of dermal structures in skin. Journal of the Mechanical Behavior of Biomedical Materials. 57, pp. 14-23.
Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach
Anssari-Benam, A, Barber, AH and Bucchi, A (2016). Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach. Journal of Materials Science: Materials in Medicine. 27 (2).
Failure mechanisms in denture adhesives
An, Y, Li, D, Roohpour, N, Gautrot, JE and Barber, AH (2016). Failure mechanisms in denture adhesives. Dental Materials. 32 (5), pp. 615-623.
Morphological and Mechanical Biomimetic Bone Structures
Parwani, R, Curto, M, Kao, AP, Rowley, PJ, Pani, M, Tozzi, G and Barber, AH (2016). Morphological and Mechanical Biomimetic Bone Structures. ACS Biomaterials Science & Engineering. 3 (11), pp. 2761-2767.
Micro-mechanical properties of the tendon-to-bone attachment
Deymier, AC, An, Y, Boyle, JJ, Schwartz, AG, Birman, V, Genin, GM, Thomopoulos, S and Barber, AH (2017). Micro-mechanical properties of the tendon-to-bone attachment. Acta Biomaterialia. 56, pp. 25-35.
Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities
Stachewicz, U, Dijksman, JF, Soudani, C, Tunnicliffe, LB, Busfield, JJC and Barber, AH (2017). Surface free energy analysis of electrospun fibers based on Rayleigh-Plateau/Weber instabilities. European Polymer Journal. 91, pp. 368-375.
X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles
Zhang, G, Parwani, R, Stone, CA, Barber, AH and Botto, L (2017). X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles. Langmuir. 33 (43), pp. 12072-12079.
Stress concentrations in nanoscale defective graphene
Wang, C, Wang, J and Barber, AH (2017). Stress concentrations in nanoscale defective graphene. AIP Advances. 7 (11), pp. 115001-115001.
Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone
Hang, F, Gupta, HS and Barber, AH (2013). Nanointerfacial strength between non-collagenous protein and collagen fibrils in antler bone. Journal of The Royal Society Interface. 11 (92), pp. 20130993-20130993.
Adhesion Anisotropy between Contacting Electrospun Fibers
Stachewicz, U, Hang, F and Barber, AH (2014). Adhesion Anisotropy between Contacting Electrospun Fibers. Langmuir. 30 (23), pp. 6819-6825.
Polarised infrared microspectroscopy of edge-oriented graphene oxide papers
Frogley, MD, Wang, C, Cinque, G and Barber, AH (2014). Polarised infrared microspectroscopy of edge-oriented graphene oxide papers. Vibrational Spectroscopy. 75, pp. 178-183.
Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy
Wang, C, Frogley, MD, Cinque, G, Liu, L-Q and Barber, AH (2014). Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy. Nanoscale. 6 (23), pp. 14404-14411.
Mechanical Behavior of Osteoporotic Bone at Sub-Lamellar Length Scales
Jimenez-Palomar, I, Shipov, A, Shahar, R and Barber, AH (2015). Mechanical Behavior of Osteoporotic Bone at Sub-Lamellar Length Scales. Frontiers in Materials. 2.
Extreme strength observed in limpet teeth
Barber, AH, Lu, D and Pugno, NM (2015). Extreme strength observed in limpet teeth. Journal of The Royal Society Interface. 12 (105), pp. 20141326-20141326.
Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks
Stachewicz, U, Bailey, RJ, Zhang, H, Stone, CA, Willis, CR and Barber, AH (2015). Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks. ACS applied materials & interfaces. 7 (30), pp. 16645-16652.
Development of sustainable biodegradable lignocellulosic hemp fiber/ polycaprolactone biocomposites for light weight applications
Barber, AH, Dhakal, HN, Ismail, S, Zhang, Z, Welsh, E, Maigret, J-E and Beaugrand, J (2018). Development of sustainable biodegradable lignocellulosic hemp fiber/ polycaprolactone biocomposites for light weight applications. Composites Part A: Applied Science and Manufacturing. 113, pp. 350-358.
Approaches to 3D printing teeth from X-ray microtomography.
Cresswell-Boyes, AJ, Barber, AH, Mills, D, Tatla, A and Davis, GR (2018). Approaches to 3D printing teeth from X-ray microtomography. Journal of Microscopy.
Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems.
Peña Fernández, M, Barber, AH, Blunn, GW and Tozzi, G (2018). Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems. Journal of Microscopy.