MammoWave Breast Imaging Device: Prospective Clinical Trial Results and AI Enhancement
Conference paper
Ghavami, N., Sánchez-Bayuela, D.A., Badia, M., Papini, L., Rana, S.P., Bigotti, A., Palomba, G., Raspa, G., Castellano, C.R., Bernardi, D., Tagliafico, A., Calabrese, M., Dudley, S., Ghavami, M. and Tiberi, G. (2023). MammoWave Breast Imaging Device: Prospective Clinical Trial Results and AI Enhancement. IEEE. https://doi.org/10.1109/cama57522.2023.10352699
Authors | Ghavami, N., Sánchez-Bayuela, D.A., Badia, M., Papini, L., Rana, S.P., Bigotti, A., Palomba, G., Raspa, G., Castellano, C.R., Bernardi, D., Tagliafico, A., Calabrese, M., Dudley, S., Ghavami, M. and Tiberi, G. |
---|---|
Type | Conference paper |
Abstract | Penalised PET image reconstruction algorithms are often accelerated during early iterations with the use of subsets. However, these methods may exhibit limit cycle behaviour at later iterations due to variations between subsets. Desirable converged images can be achieved for a subclass of these algorithms via the implementation of a relaxed step size sequence, but the heuristic selection of parameters will impact the quality of the image sequence and algorithm convergence rates. In this work, we demonstrate the adaption and application of a class of stochastic variance reduction gradient algorithms for PET image reconstruction using the relative difference penalty and numerically compare convergence performance to BSREM. The two investigated algorithms are: SAGA and SVRG. These algorithms require the retention in memory of recently computed subset gradients, which are utilised in subsequent updates. We present several numerical studies based on Monte Carlo simulated data and a patient data set for fully 3D PET acquisitions. The impact of the number of subsets, different preconditioners and step size methods on the convergence of regions of interest values within the reconstructed images is explored. We observe that when using constant preconditioning, SAGA and SVRG demonstrate reduced variations in voxel values between subsequent updates and are less reliant on step size hyper-parameter selection than BSREM reconstructions. Furthermore, SAGA and SVRG can converge significantly faster to the penalised maximum likelihood solution than BSREM, particularly in low count data. |
Year | 2023 |
Journal | 2023 IEEE Conference on Antenna Measurements and Applications (CAMA) |
Publisher | IEEE |
ISSN | 1558-254X |
Digital Object Identifier (DOI) | https://doi.org/10.1109/cama57522.2023.10352699 |
Accepted author manuscript | License File Access Level Open |
Publication dates | |
15 Nov 2023 | |
Publication process dates | |
Deposited | 16 Feb 2024 |
https://openresearch.lsbu.ac.uk/item/9653y
Download files
Accepted author manuscript
MammoWave_Breast_Imaging_Device_Prospective_Clinical_Trial_Results_and_AI_Enhancement.docx | ||
License: CC BY 4.0 | ||
File access level: Open |
43
total views25
total downloads2
views this month1
downloads this month