Non-Intrusive Gait Recognition Employing Ultra Wideband Signal Detection

PhD Thesis


Rana, S. (2020). Non-Intrusive Gait Recognition Employing Ultra Wideband Signal Detection. PhD Thesis London South Bank University School of Engineering https://doi.org/10.18744/lsbu.94988
AuthorsRana, S.
TypePhD Thesis
Abstract

A self-regulating and non-contact impulse radio ultra wideband (IR-UWB) based 3D human gait analysis prototype has been modeled and developed with the help of supervised machine learning (SML) for this application for the first time. The work intends to provide a rewarding assistive biomedical application which would help doctors and clinicians monitor human gait trait and abnormalities with less human intervention in the fields of physiological examinations, physiotherapy, home assistance, rehabilitation
success determination and health diagnostics, etc.
The research comprises IR-UWB data gathered from a number of male and female participants in both anechoic chamber and multi-path environments. In total twenty four individuals have been recruited, where twenty individuals were said to have normal gait and four persons complained of knee pain that resulted in compensated spastic walking patterns. A 3D postural model of human movements has been created from the backscattering property of the radar pulses employing understanding of spherical trigonometry and vector fields. This subjective data (height of the body areas from the ground) of an individual have been recorded and implemented to extract the gait trait from associated biomechanical activity and differentiates the lower limb movement patterns from other body areas.
Initially, a 2D postural model of human gait is presented from IR-UWB sensing phenomena employing spherical co-ordinate and trigonometry where only two dimensions such as, distance from radar and height of reflection have been determined. There are five pivotal gait parameters; step frequency, cadence, step length, walking speed, total covered distance, and body orientation which have all been measured employing radar principles and short term Fourier transformation (STFT). Subsequently, the proposed gait identification and parameter characterization has been analysed, tested and validated against popularly accepted smartphone applications with resulting variations of less than 5%. Subsequently, the spherical trigonometric model has been elevated to a 3D postural model where the prototype can determine width of motion, distance from radar, and height of reflection. Vector algebra has been incorporated with this 3D model to measure knee angles and hip angles from the extension and flexion of lower limbs to understand the gait behavior throughout the entire range of bipedal locomotion. Simultaneously, the Microsoft Kinect Xbox One has been employed during the experiment to assist in the validation process. The same vector mathematics have been implemented to the skeleton data obtained from Kinect to determine both the hip and knee angles.
The outcomes have been compared by statistical graphical approach Bland and Altman (B&A) analysis.
Further, the changes of knee angles obtained from the normal gaits have been used to train popular SMLs such as, k-nearest neighbour (kNN) and support vector machines (SVM). The trained model has subsequently been tested with the new data (knee angles extracted from both normal and abnormal gait) to assess the prediction ability of gait abnormality recognition. The outcomes have been validated through standard and wellknown statistical performance metrics with promising results found. The outcomes prove the acceptability of the proposed non-contact IR-UWB gait recognition to detect gait.

Year2020
PublisherLondon South Bank University
Digital Object Identifier (DOI)https://doi.org/10.18744/lsbu.94988
File
License
File Access Level
Open
Publication dates
Print15 Apr 2020
Publication process dates
Deposited31 Jul 2023
Permalink -

https://openresearch.lsbu.ac.uk/item/94988

Download files


File
Thesis.pdf
License: CC BY 4.0
File access level: Open

  • 23
    total views
  • 7
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Power Grid Frequency Forecasting from μPMU Data using Hybrid Vector-Output LSTM network
Dey, M., Wickramarachchi, D., Rana, S.P., Simmons, .C.V and Dudley, S. (2023). Power Grid Frequency Forecasting from μPMU Data using Hybrid Vector-Output LSTM network. 2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE). 23 - 26 Oct 2023 IEEE. https://doi.org/10.1109/ISGTEUROPE56780.2023.10408056
MammoWave Breast Imaging Device: Prospective Clinical Trial Results and AI Enhancement
Ghavami, N., Sánchez-Bayuela, D.A., Badia, M., Papini, L., Rana, S.P., Bigotti, A., Palomba, G., Raspa, G., Castellano, C.R., Bernardi, D., Tagliafico, A., Calabrese, M., Dudley, S., Ghavami, M. and Tiberi, G. (2023). MammoWave Breast Imaging Device: Prospective Clinical Trial Results and AI Enhancement. IEEE. https://doi.org/10.1109/cama57522.2023.10352699
Breast Cancer Detection using Machine Learning Approaches on Microwave-based Data
Ghavami, M., Ghavami, N., Rana, S. and Tiberi, G. (2023). Breast Cancer Detection using Machine Learning Approaches on Microwave-based Data. EUCAP 23. Florence, Italy 26 - 31 Mar 2023
Radiation-free Microwave Technology for Breast Lesion Detection using Supervised Machine Learning Model
Rana, S., Dey, M., Loretoni, R., Duranti, M., Ghavami, M., Dudley-Mcevoy, S. and Tiberi, G. (2023). Radiation-free Microwave Technology for Breast Lesion Detection using Supervised Machine Learning Model. Tomography. 9 (1), pp. 105-129. https://doi.org/10.3390/tomography9010010
High-resolution electrical measurement data processing
Dey, M. and Rana, S. (2022). High-resolution electrical measurement data processing. GB2599698
Detecting Power Grid Frequency Events from μPMU Voltage Phasor Data Using Machine Learning
Dey, M., Rana, S., Wylie, J., Simmons, C. V. and Dudley-Mcevoy, S. (2022). Detecting Power Grid Frequency Events from μPMU Voltage Phasor Data Using Machine Learning. The IET 11th International Conference on Renewable Power Generation. IET London: Savoy Place. 22 - 23 Sep 2022 Institute of Engineering and Technology (IET).
Automated breast lesion localisation in microwave imaging employing simplified pulse coupled neural network
Dey, M., Rana, S., Loretoni, R., Duranti, M., Sani, L., Vispa, A., Raspa, G., Ghavami, M., Dudley-Mcevoy, S. and Tiberi, G. (2022). Automated breast lesion localisation in microwave imaging employing simplified pulse coupled neural network. PLoS ONE. https://doi.org/10.1371/journal.pone.0271377
Markerless Gait Classification Employing 3D IR-UWB Physiological Motion Sensing
Rana, S., Dey, M., Ghavami, M. and Dudley-Mcevoy, S. (2022). Markerless Gait Classification Employing 3D IR-UWB Physiological Motion Sensing. IEEE Sensors Journal. 22 (7), pp. 6931-6941. https://doi.org/10.1109/JSEN.2022.3154092
Radial Basis Function for Breast Lesion Detection from MammoWave Clinical Data
Rana, S., Dey, M., Riccardo Loretoni, Michele Duranti, Lorenzo Sani, Alessandro Vispa, Ghavami, M., Sandra Dudley and Gianluigi Tiberi (2021). Radial Basis Function for Breast Lesion Detection from MammoWave Clinical Data. Diagnostics. 11 (10). https://doi.org/10.3390/diagnostics11101930
Solar farm voltage anomaly detection using high-resolution μ PMU data-driven unsupervised machine learning
Dey, M., Rana, S., Simmons, Clarke V. and Dudley-Mcevoy, S. (2021). Solar farm voltage anomaly detection using high-resolution μ PMU data-driven unsupervised machine learning. Applied Energy. 303, p. 117656. https://doi.org/10.1016/j.apenergy.2021.117656
Automated breast lesion localisation in microwave imaging employing simplified pulse coupled neural network
Dey, M., Rana, S., Loretoni, R., Duranti, M., Sani, L., Vispa, A., Raspa, G., Ghavami, M., Dudley-Mcevoy, S. and Tiberi, G. (2021). Automated breast lesion localisation in microwave imaging employing simplified pulse coupled neural network. London South Bank University. https://doi.org/10.18744/lsbu.8xz49
Automated terminal unit performance analysis employing x-RBF neural network and associated energy optimisation – A case study based approach
Dey, M., Rana, S. and Dudley-Mcevoy, S. (2021). Automated terminal unit performance analysis employing x-RBF neural network and associated energy optimisation – A case study based approach. Applied Energy. 298, p. 117103. https://doi.org/10.1016/j.apenergy.2021.117103
3D Gait Abnormality Detection Employing Contactless IR-UWB Sensing Phenomenon
Rana, S., Dey, M., Ghavami, M. and Dudley-McEvoy, S. (2021). 3D Gait Abnormality Detection Employing Contactless IR-UWB Sensing Phenomenon. IEEE Transactions on Instrumentation and Measurement. 70. https://doi.org/10.1109/TIM.2021.3069044
A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building
Dey, M, Rana, SP and Dudley, S (2020). A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building. Smart Cities. 3 (2), pp. 401-419. https://doi.org/10.3390/smartcities3020021
A robust FLIR target detection employing an auto-convergent pulse coupled neural network
Dey, M., Rana, S.P. and Siarry, P. (2019). A robust FLIR target detection employing an auto-convergent pulse coupled neural network. Remote Sensing Letters. 10 (7), pp. 639-648. https://doi.org/10.1080/2150704x.2019.1597296
Boosting content based image retrieval performance through integration of parametric & nonparametric approaches
Rana, S., Dey, M. and Siarry, P. (2019). Boosting content based image retrieval performance through integration of parametric & nonparametric approaches. Journal of Visual Communication and Image Representation. 58, pp. 25-219. https://doi.org/10.1016/j.jvcir.2018.11.015
Signature Inspired Home Environments Monitoring System Using IR-UWB Technology
Rana, S., Dey, M., Ghavami, M. and Dudley-Mcevoy, S. (2019). Signature Inspired Home Environments Monitoring System Using IR-UWB Technology. Sensors. 19 (2), p. 385. https://doi.org/10.3390/s19020385
Non-Contact Human Gait Identification through IR-UWB Edge Based Monitoring Sensor
Rana, S., Dey, M, Ghavami, M and Dudley-McEvoy, S (2019). Non-Contact Human Gait Identification through IR-UWB Edge Based Monitoring Sensor. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2019.2926238
Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data
Rana, S., Dey, M., Tiberi, G., Sani, L., Vispa, A., Raspa, G., Duranti, M., Ghavami, M. and Dudley-Mcevoy, S. (2019). Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data. Scientific Reports. 9, p. 10510. https://doi.org/10.1038/s41598-019-46974-3
ITERATOR: A 3D Gait Identification from IR-UWB Technology
Rana, S., Dey, M, Ghavami, M and Dudley, S (2019). ITERATOR: A 3D Gait Identification from IR-UWB Technology. International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (EMBC 2019). Berlin, Germany 23 - 27 Jul 2019
Biometric Security and Internet of Things (IoT)
Obaidat, M. S., Rana, S., Maitra, T., Giri, D. and Dutta, S. (2018). Biometric Security and Internet of Things (IoT). in: Biometric-Based Physical and Cybersecurity Systems Springer. pp. 477–509
Semi-supervised learning techniques for automated fault detection and diagnosis of HVAC systems
Dey, M., Rana, S. and Dudley, S. (2018). Semi-supervised learning techniques for automated fault detection and diagnosis of HVAC systems. IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2018). Volos, Greece 05 - 07 Nov 2018 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ictai.2018.00136
Smart Building Creation in Large Scale HVAC Environments through Automated Fault Detection and Diagnosis
Dudley, S, Dey, M and Rana, S. (2018). Smart Building Creation in Large Scale HVAC Environments through Automated Fault Detection and Diagnosis. Future Generation Computer Systems. 108, pp. 950-966. https://doi.org/10.1016/j.future.2018.02.019
Remote Vital Sign Recognition Through Machine Learning Augmented UWB
Dudley, S, Rana, S., Dey, M, Brown, R and Siddiqui, H (2018). Remote Vital Sign Recognition Through Machine Learning Augmented UWB. European Conference on Antennas and Propagation. Excel London, Docklands 09 - 13 Apr 2018 London South Bank University. https://doi.org/10.1049/cp.2018.0978
A Self Regulating and Crowdsourced Indoor Positioning System through Wi-Fi Fingerprinting for Multi Storey Building
Rana, S., Dey, M and Dudley, S (2018). A Self Regulating and Crowdsourced Indoor Positioning System through Wi-Fi Fingerprinting for Multi Storey Building. Sensors. 18 (11), pp. 1-15. https://doi.org/10.3390/s18113766
Semi-Supervised Learning Techniques for Automated Fault Detection and Diagnosis of HVAC System
Dudley, S, Dey, M and Rana, S. (2018). Semi-Supervised Learning Techniques for Automated Fault Detection and Diagnosis of HVAC System. IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2018). Volos, Greece 05 - 07 Nov 2018
A PID inspired feature extraction method for HVAC terminal units
Dey, M., Gupta, M., Rana, S., Turkey, M. and Dudley-Mcevoy, S. (2017). A PID inspired feature extraction method for HVAC terminal units. IEEE Conference on Technologies for Sustainability (SusTech 2017). Phoenix, Arizona, USA 12 - 14 Nov 2017 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/sustech.2017.8333470
UWB Localization Employing Supervised Learning Method
Rana, S., Dey, M., Siddiqui, H., Tiberi, G., Ghavami, M. and Dudley, S (2017). UWB Localization Employing Supervised Learning Method. IEEE International Conference on Ubiquitous Wireless Broadband 2017. Salamanca, Spain 12 - 15 Sep 2017 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICUWB.2017.8250971
A PID Inspired Feature Extraction for HVAC Terminal Units
Dey, M, Gupta, M, Rana, S., Turkey, M and Dudley, S (2017). A PID Inspired Feature Extraction for HVAC Terminal Units. IEEE Conference on Technologies for Sustainability (SusTech 2017). Phoenix, Arizona, USA 12 - 14 Nov 2017 Institute of Electrical and Electronics Engineers (IEEE).