Markerless Gait Classification Employing 3D IR-UWB Physiological Motion Sensing
Journal article
Rana, S., Dey, M., Ghavami, M. and Dudley-Mcevoy, S. (2022). Markerless Gait Classification Employing 3D IR-UWB Physiological Motion Sensing. IEEE Sensors Journal. 22 (7), pp. 6931-6941. https://doi.org/10.1109/JSEN.2022.3154092
Authors | Rana, S., Dey, M., Ghavami, M. and Dudley-Mcevoy, S. |
---|---|
Abstract | Human gait refers to the propulsion achieved by the effort of human limbs, a reflex progression resulting from the rhythmic reciprocal bursts of flexor and extensor activity. Several quantitative models are followed by health professionals to diagnose gait abnormality. Marker-based gait quantification is considered a gold standard by the research and health communities. It reconstructs motion in 3D and provides parameters to measure gait. But, it is an expensive and intrusive technique, limited to soft tissue artefact, prone to incorrect marker positioning, and skin sensitivity problems. Hence, markerless, swiftly deployable, non-intrusive, camera-less prototypes would be a game changing possibility, and an example is proposed here. This paper illustrates a 3D gait motion analyser employing impulse radio ultra-wide band (IR-UWB) wireless technology. The prototype can measure 3D motion and determine quantitative parameters considering anatomical reference planes. Knee angles have been calculated from the gait by applying vector algebra. Simultaneously, the model has been corroborated with the popular markerless camera based 3D motion capturing system, the Kinect sensor. Bland and Altman (B&A) statistics has been applied to the proposed prototype and Kinect sensor results to verify the measurement agreement. Finally, the proposed prototype has been incorporated with popular supervised machine learning such as, k-nearest neighbour (kNN), support vector machine (SVM) and the deep learning technique deep neural multilayer perceptron (DMLP) network to automatically recognize gait abnormalities, with promising results presented. |
Keywords | Gait; Impulse Radio Ultra-Wide Band (IR-UWB); Knee Angle Extraction; Kinect Xbox Sensor; Bland and Altman Plot; Machine Learning; Deep Multilayer Perceptron |
Year | 2022 |
Journal | IEEE Sensors Journal |
Journal citation | 22 (7), pp. 6931-6941 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
ISSN | 1558-1748 |
Digital Object Identifier (DOI) | https://doi.org/10.1109/JSEN.2022.3154092 |
Web address (URL) | https://ieeexplore.ieee.org/document/9720988 |
Publication dates | |
24 Feb 2022 | |
Publication process dates | |
Accepted | 09 Feb 2022 |
Deposited | 09 Mar 2022 |
Accepted author manuscript | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/8z681
Download files
184
total views173
total downloads2
views this month4
downloads this month