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Abstract— Human gait refers to the propulsion achieved by the
effort of human limbs, a reflex progression resulting from the
rhythmic reciprocal bursts of flexor and extensor activity. Several
quantitative models are followed by health professionals to diag-
nose gait abnormality. Marker-based gait quantification is consid-
ered a gold standard by the research and health com- munities.
It reconstructs motion in 3D and provides parameters to measure
gait. But, it is an expensive and intrusive technique, limited to
soft tissue artefact, prone to incorrect marker positioning, and
skin sensitivity problems. Hence, markerless, swiftly deployable,
non-intrusive, camera-less prototypes would be a game changing
possibility and an example is proposed here. This paper illustrates
a 3D gait motion analyser employing impulse radio ultra-wide band
(IR-UWB) wireless technology. The prototype can measure 3D mo-
tion and determine quantitative parameters considering anatomical
reference planes. The knee angles have been calculated from gait by applying vector algebra. Simultaneously, the model
has been corroborated with the popular markerless camera based 3D motion capturing system Kinect sensor. Bland
and Altman (B&A) statistics has been measured between the proposed prototype and Kinect sensor results to verify
the measurement agreement. Finally, the proposed prototype has been incorporated with popular supervised machine
learning and deep learning techniques to automatically recognize gait abnormalities, with promising results presented.

Index Terms— Gait, Impulse Radio Ultra-Wide Band (IR-UWB), Knee Angle Extraction, Kinect Xbox Sensor, Bland and
Altman Plot, Machine Learning, Deep Multilayer Perceptron.

I. INTRODUCTION1

HUMAN gait motion is an association of several voluntary2

movements resulting from complex processes where3

the brain, spinal cord, muscles, nervous system, bones, and4

joints function together. Both the upper and lower limbs5

synchronize simultaneously in this translational process. Phys-6

ically, each and every bone participates in the process, but7

empirically the bones of the pelvis and lower limbs are8

normally considered to realize this repetitive locomotion. The9

rudiments of three different disciplines, anatomy, physiology,10

and biomechanics are obligatory to appreciate movement.11

Anatomy of gait explains the relationships between different12

body parts based on their anatomical positions in the sagittal,13

frontal, and transverse planes [1]. The joint and associated14

muscle movements are further divided based on the movement15
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direction in the reference planes, the movements are flexion- 1

extension, abduction-adduction, and internal-external rotation. 2

Gait physiology involves different nervous systems and signals 3

transmitted or received from the relevant motor system, where 4

this communication transforms into a motion. Biomechanics 5

is a study of the skeletal muscle’s (primarily responsible for 6

gait) movements with the help of mechanical engineering to 7

investigate quantitative gait parameters [2]. Gait parameters 8

are predominantly used to practically measure lower limb 9

movement in clinical assessment, where movement quality 10

is analysed by anatomy and physiology. Pathological gait 11

is realized when a person is unable to walk in the ‘usual’ 12

way, due to collapsed support, leg complicacy, insufficient 13

limb strength, trunk injury, arthritis, soft tissue infection, 14

birth defects, cerebral palsy, stroke, etc. These problems are 15

measured and monitored mainly for healthcare (e.g., Parkin- 16

son’s disease), athletic performance, rehabilitation reasons, 17

etc. Abnormalities are categorized into five types based on 18

the range of symptoms such as, spastic, scissors, steppage, 19

waddling, and propulsive gait, pictorially shown in Figure 1. 20
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(a) Spastic (b) Scissor (c) Propulsive (d) Steppage (e) Waddle

Fig. 1: Types of abnormal gaits and reflections on individual’s
walk [3].

II. DIAGNOSIS OF GAIT & STATE-OF-ART1

TECHNOLOGIES2

Quantitative gait assessment is an accepted and less error3

prone method due to the employment of advanced technical4

instruments beyond that of visual observation applied in qual-5

itative monitoring in gait diagnosis. These technologies are6

classified into 2D and 3D models based on their ability to7

measure anatomical landmarks. The 2D quantitative models8

can measure gait parameters such as step, acceleration, speed,9

body orientation, angular velocity, magnetic field using inertial10

instruments, such as accelerometers, gyroscopes, magnetome-11

ters, etc. [4]. These parameters relate only to the sagittal and12

frontal planes which actually lack information regarding the13

postural aspect. Moreover, these are not standalone schemes14

but practised along with other clinical gait instruments. Clin-15

ical gait requires models and instruments that depict the16

required parameters as well as the body’s appearance during17

movement to realize the overall, personalized mechanics of18

the musculoskeletal system. This can be addressed with a 3D19

motion capture (also known as ‘3D mocap’) model adding20

an extra dimension i.e., transverse plane anatomy to the21

gait motion analysis which aims to assist professionals to22

more precisely understand both body appearance and gait23

biomechanics simultaneously.24

There are two types of 3D mocap models, marker-based25

and markerless [5]. Video based optoelectronic techniques26

employ retro-reflective markers attached to the patient’s body27

in marker-based models to reconstruct movement and identify28

anatomical landmarks in 3D. However, it faces the soft tissue29

artefact problem i.e., the abnormality related to bone is difficult30

to detect if the marker positions are incorrectly placed. Also,31

patients often suffer skin sensitivity issues from the adhesive32

tape and electrode markers used. Thus, markerless or non-33

contact 3D gait has gained increasing interest in the biome-34

chanics and biomedical community. Conventional markerless35

3D gait estimation is performed by employing multiple cam-36

eras or camera sensors to determine kinetics and kinematics37

[6]. The video data frames are synchronized from different38

view- points to reconstruct movement information. Currently,39

the biomechanics and biomedical communities collaborate40

with computer vision adopting conventional machine learning41

(ML) and deep learning (DL) to recognize gait abnormality.42

Viewing angle and frame synchronization maintenance are the43

most demanding tasks for this method. Markerless 3D gait44

models are classified into two further groups, model-free and 1

model-based approaches. The model-free approaches use a 2

likelihood function to identify joints, pose, and body shape 3

whereas the model-based approaches use a priori knowledge of 4

the human body to estimate gait. However, current model-free 5

and model-based gait research exploiting ML generally focus 6

on person identification and not to identify/diagnose walking 7

abnormalities or disorders, and for identification, the wearable 8

sensing tool is still the preferred research field in motion 9

analysis [7] hitherto. These investigations largely make use 10

of smartphone’s inbuilt inertial sensors, accelerometers, and 11

gyroscopes. For instance, Muaaz and Mayrhofer developed 12

an android application employing smartphone accelerometers 13

to analyse walking data to establish the identity of an indi- 14

vidual in order to prevent zero-effort and live minimal-effort 15

impersonation attacks [8]. Gadaleta and Rossi developed a 16

gait recognition based user authentication system calculating 17

acceleration, orientation, and angular velocity features engag- 18

ing convolutional neural network (CNN) and comprehending 19

them through one class support vector machine (SVM) [9]. 20

Zou et. al. employed a hybrid neural network architecture 21

to confirm an individual’s walk collecting the inertial sensor 22

data from an accelerometer and gyroscope via a smartphone. 23

The gait features were extracted through deep CNN (DCNN) 24

maintaining time- series fashion and segregated with long 25

short-term memory (LSTM) network [10]. 26

On the contrary, other types of gait identification or bio- 27

metric research considers image and video frames to analyse 28

unique postural characteristics of walk such as, Wolf et. al. 29

who created a 3D CNN for human walk identification taking 30

gray-scale images and optical flow as the input that is invariant 31

to clothing, walking speed, and viewing angle [11]. Tang et. 32

al. proposed a method to overcome a limited number of gait 33

view data assuming the 3D shape shares a common view 34

surface. Walking image shapes were formed via the Laplacian 35

deformation energy function inpainting gait silhouettes which 36

were re-projected onto the 2D space to construct partial gait 37

energy images. These partial gait view images were fed into 38

the system for classifying the person from an arbitrary view 39

[12]. Usually, the gait biometric algorithms operate on a 40

single person, however walking characteristics change when 41

the person walks with multiple persons. This was addressed 42

by Chen et. al. computing human graphlets and integrating 43

them into a tracking-by-detection method to obtain a person’s 44

complete silhouette. The attributes were determined using a 45

latent conditional random field (L-CRF) model and classifying 46

latent structural SVM framework [13]. Thapar et. al. presented 47

another user authentication system resolving view angle issue 48

and classifying walking patterns without human cooperation 49

through 3D CNN model, where the first stage identifies 50

different view angles, and second stage detects the person [14]. 51

Battistone and Petrosino modelled a system for action and gait 52

recognition realising structured data and temporal information 53

through deep neural network named time based graph long 54

short-term memory (TGLSTM) [15]. A model named PoseGait 55

was developed by Liao et. al. extracting joint angles, limb 56

length, joint motions and realizing through CNN to prevent the 57

effect of illumination change and clothing on gait recognition 58
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[16]. Zhang et. al. classified gait patterns considering canon-1

ical and pose features along with walking speed, carrying,2

and clothing from high resolution RGB images modelling3

LSTM network for biometric authentication [17]. Chai et. al.4

created an architecture for biometric gait recognition named5

gate controlled and shared attention ICDNet (GA-ICDNet)6

processing covariate and identity feature separately and in7

parallel from gait energy images [18]. Gupta presented a pose8

invariant gait based user authentication system extracting fea-9

tures from human body’s silhouette of pose energy images and10

adapting them via generator advisory network (GAN) model11

[19]. Zhang et. al. proposed gait biometry applying Koopman12

theory, deriving features from gait silhouettes and realising13

them by employing convolutional variational autoencoder and14

deep Koopman embedding system [20].15

Impulse radio ultrawideband (IR-UWB) pulsed Doppler16

radar is also utilized as a markerless technique by researchers17

because of its high bandwidth and precise performance in de-18

scribing human motion [21]. However, gait is either analysed19

in 2D determining time–frequency variation with the help of20

signal processing tools from IR-UWB micro-Doppler (µD)21

signature [22] [23] or the region of interest (ROI) is extracted22

from the signatures and classified using ML to understand23

locomotion characteristics [24]. Recently, UWB radar sensors24

have been used to collect gait data from different angles25

and classified the fused sequence by Bi-LSTM (Bidirectional26

LSTM) network focusing the natural gait transition and fall27

events [25].28

3D non-wearable or markerless gait biomechanic assess-29

ment is extremely important to provide large scale screening to30

prevent and treat musculoskeletal injuries, hence the proposed31

study is focused on 3D gait detection and recognition with32

wide-ranging artificial intelligence application. 3D gait repre-33

sentation techniques, such as marker-based approach (without34

ML and DL) is mainly applied by clinicians or health profes-35

sionals, while markerless methods (engaging image classifica-36

tion with ML and DL) are predominantly practised by engi-37

neering disciplines. Hence, improved gait research requires an38

alternative method to rep- resent locomotion in 3D. Augment-39

ing such systems with classification via ML or DL would bring40

added benefits such as assisted and automated detection and41

remote diagnostics/rehabilitation opportunities. The authors42

proposed and reported the first ever 3D model-based gait43

identification method from impulse radio ultra-wideband (IR-44

UWB) wireless communication technology applying spherical45

trigonometry [26], [27]. This is a markerless, nonintrusive,46

non-contact, and camera-less prototype where gait motion is47

interpreted through the understanding of anatomical reference48

planes. The model has been further improved in this research49

employing vector algebra to calculate knee angles. Simultane-50

ously, the model has been corroborated with the popular Kinect51

Xbox One sensor for knee angle measurement as this is the52

most successful model-free gait analysis system reported by53

field researchers [28]–[30]. Bland and Altman (B&A) statistics54

has been measured between the proposed IR-UWB prototype55

and Kinect sensor results to verify the agreement. Finally,56

the proposed prototype has been incorporated with popular57

supervised machine learning (ML) as well as the deep neural58

multilayer perceptron (DMLP) techniques to investigate their 1

potential to automatically recognize gait abnormalities with 2

the said system. The proposed markerless prototype would 3

permit large scale, local community based testing, not restrict 4

patients with marker attachments and allow them to walk 5

comfortably, more naturally and freely during diagnosis. Being 6

easily deployable and contact free, the set-up would innately 7

be low cost per-patient and highly scalable. The cost and 8

inconvenience of dedicated labs, complex and single-use con- 9

sumable markers could be avoided, the necessity of cleaning 10

and potentially re-sterilization of a wearable instruments ae 11

also avoided, and patients relieved from skin irritation as well 12

as the potential to perform the test outside enabling social 13

distancing requirements of the future. The model operates with 14

very low-power which would bypass the power management 15

issues of patches and wearables, and also this would provide a 16

business model shift from consumable sales to a service model 17

that provides more valuable, insightful information that could 18

change the nature of modern gait healthcare. The detailed 19

experimental set-up, the proposed method, result analysis, 20

conclusion and future research direction are demonstrated in 21

the following sections. 22

III. METHOD 23

A number of phases are involved in the study. Ethical 24

clearance was required in order to conduct this research. 25

Human participants were recruited upon acceptance of the 26

ethical statement and examined through IR-UWB radar and 27

Kinect Xbox sensor in an anechoic environment. Knee angles 28

have been determined from the motion data captured using 29

these two devices of their gait. The knee angles computed from 30

IR-UWB radar have been fed into ML and DL after confirming 31

its correctness comparing with Kinect’s knee angles. The steps 32

involved here are summarised and shown in Figure 2. 33

A. Ethical Approval Statement 34

Twenty-four participants have been recruited hitherto for 35

the data collection process. Twenty participants have normal 36

walking abilities and four participants had spasticity in this 37

research. Full ethical approval was gained from London South 38

Bank University, where the research code of practice and 39

ethical guidelines are governed by the university ethics panel 40

(UEP). 41

B. Laboratory & Data 42

A Time Domain PulsON-P410 mono-static radar module 43

(P410-MRM) has been used to collect the non-intrusive physi- 44

ological sensing phenomena reported here, shown in Figure 3a. 45

The module is a pulsed Doppler radio transceiver that utilizes 46

two-way time of flight (TW-TOF) omni-directional range 47

measurement techniques. The nanosecond duration Gaussian 48

pulses generated by the radar have low duty cycle resulting in 49

the high pulse repetition rate (PRR) of 10 MHz enabling im- 50

proved detection of human movement. The transmitting radio 51

frequency (RF) has a center frequency at 4.3 GHz. The module 52

adheres to FCC power restrictions for safe RF transmission. 53
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Fig. 2: Different phases involved in the proposed research.

The anechoic experimental environment is shown in Figure 3b.1

Initially, gender and anatomical information (height, length of2

the limbs) have been recorded for each individual as shown3

in Figure 3c.4

C. Theoretical Model5

To assist in the differentiation of separate body areas,6

azimuth and elevation angles are considered. All the ranges7

have been denoted here by vector notation as they have specific8

magnitude and direction at particular time. Figure 4a shows9

the elevation and azimuth angle from the received pulsed radar10

signal. Here, O is considered as the radar receiver, which is11

fixed at a point of height
−−→
OP from the ground. Let,

−→
OA and12 −−→

OC are the range from O at time t1 and t2 where angle13

between
−−→
BC and

−−→
OB be α. Then the height of any movement14

from the ground at a particular time is h then,15

h = |
−−→
OP −

−−→
OB × cosα| (1)

If the moving limb be deviates at an azimuth angle ϕ,16

where the travelled distances are
−→
OA and

−−→
OC with specific17

propagation delay. Thus, the change of distance is
−−→
DA at the18

delay interval ∆t. Therefore, ϕ is calculated from the radian19

measure, and equivalent degree conversion is ϕ =
−−→
DA×360◦−−→
OA×2×π

.20

Let the coordinate of each back-scattered pulse returning 1

from an obstacle, such as a human body, have its motion 2

width span, distance, height from radar be denoted as a, r, h 3

respectively. Thus each pulse can be considered a vector and 4

represented as aî + rĵ + hk̂ after finding the a, r, h where, 5

î, ĵ, and k̂ are the unit vectors of 3D space. The ‘a priori’ 6

properties of vector and human body have been applied further 7

to measure the knee angles (shown in Figure 3c). 8

D. Knee Angles from IR-UWB Sensing 9

Human gait creates angles between the thigh and shank 10

muscles during walking where the angle increases during 11

muscle extension and decreases during flexion. This knee 12

angle variation is significant for gait characterization. Figure 13

4b shows a human walking posture where the four points 14−→
LT ,

−→
LS ,

−→
RT ,

−→
RS ∈ R3 Euclidean space at time t, have 15

been assumed for the thigh and shank of the left and right 16

legs respectively. The dot product of the points from each leg 17

provides the acute angle γL and γR between them, whereas, 18

the measurement of the obtuse angles (βL and βR) are 19

anatomically more significant. The acute left knee angles have 20

been determined and are described in Eq. 2 considering the 21

dot product relationship
−→
LT .

−→
LS = |

−→
LT ||

−→
LS | cos γL. 22

γL = cos−1

(
(a1a2 + r1r2 + h1h2)√

a21 + r21 + h2
1

√
a22 + r22 + h2

2

)
(2)

Similarly the acute right knee angle γR has been calculated. 23

Subsequently, the obtuse knee angles (βL and βR) for the 24

left and right legs are βL = 180◦ − γL, βR = 180◦ − γR 25

respectively. 26

E. Calibration of Kinect Xbox One 27

The camera based Microsoft Kinect Xbox One tracks 3D 28

human skeleton using color and depth sensors time-of-flight 29

(TOF) technology. It has been calibrated with 30 frames per 30

second (FPS) for color and depth sensor for video acquisition 31

where the horizontal and vertical field views are 70◦ and 60◦, 32

respectively. The camera sensor operates over a range from 0.8 33

to 4.2 meters. It delivers 20 skeletal 3D joint coordinates at 34

standing condition from the body posture. This skeletonization 35

process is similar to the proposed prototype permitting the 36

validation of the work via the Kinect. Figure 3d shows the 20 37

joints from a human body where, the validation process has 38

used only 6 lower limb’s joints such as, the hip left (
−−→
HL), 39

knee left(
−−→
KL), ankle left (

−→
AL), hip right (

−−→
HR), knee right 40

(
−−→
KR), and ankle right (

−→
AR). Then the vector algebra has been 41

employed on these joints to measure knee angles for both 42

legs. Let, the vectors
−−→
HL,

−−→
KL,

−→
AL,

−−→
HR,

−−→
KR,

−→
AR ∈ Rn

43

in Euclidean n-space. The component form of these vectors 44

have been denoted as,
−−→
HL = a5î + r5ĵ + h5k̂,

−−→
KL = a6î + 45

r6ĵ + h6k̂,
−→
AL = a7î + r7ĵ + h7k̂,

−−→
HR = a8î + r8ĵ + h8k̂, 46−−→

KR = a9î+ r9ĵ+h9k̂, and
−→
AR = a10î+ r10ĵ+h10k̂ where, 47

subscripts with a, r, h represents the distance from î, ĵ, k̂ 48

planes respectively. 49
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(a) UWB P410 radar module. (b) Anechoic chamber.
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Fig. 3: UWB device and the environments during data collection.
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Fig. 4: Three dimensional sphere consideration and vectorisa-
tion of back-scattered UWB pulse.

F. Knee angle from Kinect1

The knee and ankle joints (shown in Figure 3d) from the2

skeletal data of both legs have been used here to calculate the3

two knee angles. In the case of the left leg, the connecting line4

between vectors
−−→
HL and

−−→
KL would span the vector

−−→
LT k =5

a56î + r56ĵ + h56k̂ where a56 = (a5 − a6), r56 = (r5 −6

r6), h56 = (h5−h6) and the straight line between points
−−→
KL7

and
−→
AL would span the vector

−−→
LSk = a67î+r67ĵ+h67k̂ where8

a67 = (a6 − a7), r67 = (r6 − r7), h67 = (h6 − h7). The dot9

product of
−−→
LT k and

−−→
LSk i.e.,

−−→
LT k.

−−→
LSk = |

−−→
LT k||

−−→
LSk| cos γ′

10

provides the acute angle between these two, whereas the inner11

knee angle would be the obtuse angle between them. The acute12

angle has been denoted by γ′
L and detailed in Eq. 3.13

γ′
L = cos−1

(
a56a67 + r56r67 + h56h67√

a256 + r256 + h2
56

√
a267 + r267 + h2

67

)
(3)

Therefore, the inner knee angle or obtuse knee angle for14

the left leg β′
L = 180◦ − γ′

L. Similarly, the acute knee angle15

γ′
R between

−−→
RT k and

−−→
RSk for right leg has been determined16

where the obtuse angle or inner knee angle for right leg β′
R =17

180◦ − γ′
R.18

IV. BLAND ALTMAN (B&A) PLOT ANALYSIS19

Differences were found between the measurements of knee20

angles from the IR-UWB system and Kinect, thus the out-21

comes have been compared using Bland and Altman (B&A)22

plot analysis. The B&A is a hypothetical graphical approach23

[31] based on the level of agreement between the two quanti- 1

tative measurements by studying the mean difference and con- 2

structing limits of agreement to assess the association between 3

methods. Let, the measured knee angles of participants from 4

the proposed and Kinect system be kp and kk respectively, 5

mean of knee angle is mk, differences between paired knee 6

angles is dk, standard deviation of the differences obtained 7

for the knee angle is sk. The graphical approach is employed 8

to observe the assumptions of normality of differences and 9

other characteristics where the x-axis represents the average 10

of measurements, and the y-axis shows the difference between 11

the two measurements. The two systems would agree when 12

most of the consequences lie within dk ± 1.96sk for the mea- 13

surement of knee angle. More precisely, 95% of differences 14

must lie within dk±1.96sk for measuring knee angles accord- 15

ing to Bland Altman analysis. Thus, null hypothesis states 16

here there is no significant difference between populations 17

(measurements) taken by the proposed work and Kinect for 18

determining the knee angles of participants where probability 19

value p < 0.05 indicates acceptance of null hypothesis and 20

correctness of assumption. 21

V. IR-UWB GAIT RECOGNITION EMPLOYING MACHINE 22

LEARNING & DEEP LEARNING 23

The radar module requires a propagation delay of 23.436 24

nanoseconds to cover the 3 meters range of the anechoic 25

chamber testbed. Each pulse is represented by a sequence of 26

288 samples; thus the prototype generates (288 × 2) = 576 27

knee angles from each back-scattered pulse response consider- 28

ing the left and right leg’s simultaneous movement. From the 29

proposed work this is considered as the feature to represent 30

normal and spastic gait to solve this two class classification 31

problem. The knee angle’s feature vector has been visualized 32

as {βL1
, βL2

, ...βL288
, βR1

, βR1
, ...βR288

}, where βL and βR 33

indicate the left and right knee angles respectively. 34

The leading non-linear classifiers such as, the k-nearest 35

neighbour (kNN) and the support vector machine (SVM) have 36

been implemented initially, observing the feature distribution 37

in Euclidean hyperspace to recognize UWB gait patterns and 38

assess the appropriateness of ML in this context. Though 39

kNN is rudimentary it has been chosen for its simplicity as it 40

can adapt any data without imposing a boundary structure. 41

Flexibility is tricky because of the high variance yet this 42

characteristic may be advantageous here. Conversely, if the 43

data has a high variance and requires boundary structure to 44
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fit, then the SVM is selected. However, deep MLP also has1

been selected for its feature engineering capability that reduces2

the feature extraction task towards an improved classification3

outcome. The kNN [32] classifier has been incorporated by4

fine (kNNF ), medium (kNNM ), and coarse neighbourhoods5

(kNNC) signifying 1, 3, and 5 neighbourhood numbers re-6

spectively. Two effective distance metrics, Euclidean and Ma-7

halanobis perform well with kNN, but the Euclidean distance8

is considered here to measure the distance of a feature vector9

from its nearest neighbour to avoid the computational overhead10

induced by Mahalanobis, a core low overhead requirement of11

the system. An odd number of k has been chosen for this12

binary classification problem to avoid the ties in class label13

assignment i.e. two groups attaining the same score by the14

classifier. Further, SVM has also been enforced with both15

linear and non-linear (quadratic) kernels [33] for non-linear16

classification because, unlike quadratic kernel, linear kernel17

of SVM can also separate non-linear data in high dimensions.18

Subsequently, linear and quadratic kernel based SVMs have19

been denoted by SVML and SVMQ respectively. The state-20

of-art classification technique deep learning also has been21

studied and implemented for the gait pattern recognition task.22

Hence, a deep neural multilayer perceptron (DMLP) network23

has been designed and implemented for the classification task.24

The network comprises four hidden layers where the rectified25

linear activation function (ReLU) and cross-entropy have been26

employed as activation and loss function respectively. The27

ground truth UWB gait data information has been created28

during the data collection phase by observing simultaneous29

skeletons of participants visualized via the Kinect interface.30

VI. CROSS VALIDATION & PERFORMANCE EVALUATION31

A cross validation technique has been used to assess predic-32

tive outcomes and select models to develop SML prototypes.33

Model selection by cross-validation has been implemented34

by repeated random sub-sampling of the data, which is also35

known as Monte Carlo cross-validation. The dataset has been36

randomly partitioned to select the training (initialised with37

5% data) and validation dataset (started with the rest of the38

95% data). This process repeats to identify the appropriate39

training-testing dataset ratio and the stage of overfitting. Each40

model then ran for 10 rounds to acquire the appropriate ratio,41

subsequently the performance metrics have been aggregated42

and averaged over all the rounds. A number of appropriate and43

accepted statistical metrics such as, accuracy, sensitivity, and44

specificity [34] have been used to scrutinize the implemented45

classifiers performance.46

VII. RESULT ANALYSIS47

The experimental results of the proposed 3D motion capture48

(IR-UWB) and Kinect, the subsequent conventional ML and49

DL execution are demonstrated in this section. Figures 5a and50

5b display the front and side views of the 3D walking motion51

captured for one of the twenty normal walking patterns via52

the proposed IR-UWB response over an observation period.53

The x, y, and z axis signify gait motion width, distance from54

radar, and height of movement respectively. Motion from the55

(a) Front view of IR-UWB
3D response from a normal
walk.

(b) Side view of IR-UWB 3D
response from a normal walk.

(c) 3D human motion from IR-
UWB.

(d) 3D human skeleton
from Kinect.

(e) Variation of knee angles
determined from proposed
model.

(f) Variation of knee an-
gles determined from Kinect
skeleton.

(g) 3D human motion captured
by IR-UWB from spastic gait.

(h) 3D human skeleton
captured by Kinect from
spastic gait.

(i) Changes of knee angles
determined from proposed
model for spastic gait.

(j) Changes of knee an-
gles determined from Kinect
skeleton for spastic gait.

Fig. 5: 3D gait motion captured from proposed IR-UWB and
Kinect for normal and spastic walk in anechoic environment.

system appears like the letter ‘W’, displaying the symmetry of 1

the human body with three areas labelled P1, P2, and P3. Here, 2

the area P1 reflects the hip joint of this particular participant, 3

P1 to P2 and P1 to P3 denote the change of position of the 4

human body due to gait motion when one leg is lifted from 5
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the ground and the other leg makes contact with the ground1

to push the body forward during walking. The person walked2

back and forth in front of the radar (along a 3 m testbed) during3

the observation times, creating the distinct areas (P1, P2, and4

P3) in 3D. The distance between the bottom of P2 and P3 areas5

represent the step base width i.e., the perpendicular distance6

between two steps during gait. In addition, two areas detected7

above leg height are the hand movements (both right and left).8

Figure 5c displays the front view of a walking pattern captured9

through the IR-UWB response and Figure 5d demonstrates the10

skeletonization of that same gait pattern acquired using the11

Kinect in the anechoic chamber.12

Figure 5c shows a 3D structure resembling the letter ‘W’13

which includes the flexion and extension of the skeletal14

muscle’s (i.e., arm and legs) motion over time. The skeletal15

muscles move faster than the other body sections implying the16

transmission of higher energy by the bio-mechanical process17

enabling UWB radar to capture motion. Lower limb extension18

(left and right) creates a separate motion area, whereas the19

flexion (right and leg) of the lower limb and upper limbs20

creates a linear region from the shoulders further describing21

human motion. The person depicted in Figure 5c and 5d22

has an actual height of 1.55 m whereas the estimated height23

of the shape is 1.35 m. This is because the platform has24

been developed to capture all movements via the UWB up25

to the shoulder height from the ground level. The leg length26

(of the example participant) is 0.95 m and knee height of27

0.45 m from the ground level have been used to separate28

each lower limb sections to determine the left and right knee29

angles. Figure 5e and 5f demonstrates the estimation of knee30

angles (approximately varied between 120◦ to 178◦) from31

the proposed study and Kinect (approximately varied between32

122◦ to 175◦) respectively using the method of Eq. 2 and Eq.33

3. The x-axis denotes the single gait cycle (in percentage) of34

a person by considering two consecutive steps and the process35

has been repeated for 30 seconds then plotted in y-axis and z-36

axis representing the knee angles during the observation time.37

The troughs here represent the angles during flexion and crest38

signifies the angles at the time of leg extension.39

Figure 5g displays the motion of a spastic gait participant40

and stiffness of the left leg muscle forces the person to41

stretch that leg more during walking which is also reflected42

in the Kinect skeleton of Figure 5h. The figures show that43

the leg deviates more from the centre of the body during44

walking, resulting in the unusual knee angle variation of45

between 135◦ to 163◦ (in Figure 5i) and 139◦ to 171◦ (in46

Figure 5j), determined from the proposed prototype and Kinect47

respectively.48

A. Bland and Altman (B&A) Plot Outcomes49

Theoretical details of the Bland and Altman (B&A) plot50

(shown in Figure 6) is presented in section IV to support the51

knee angle measurement performed by the proposed model.52

Figure 6a and 6b display the B&A plots of knee angle53

measurements taken by both systems for twenty normal and54

four abnormal gaits respectively. The x and y axis represent55

the mean of two measurements and difference between the two56

paired measurements respectively. Both methods have some 1

degree of error with the B&A plot indicating the relationship 2

and agreement between these two methods for non-contact gait 3

analysis. Figure 6a shows that the bias or mean of difference is 4

-0.653 which signifies the second method Kinect continuously 5

displays 0.653 degree units more than the proposed IR-UWB 6

model and 95% of the differences are within dk ± 1.96sk 7

for knee angle measurements. In addition, Figure 6b displays 8

the bias at -2.277 when measuring participants with abnormal 9

gait, indicating Kinect always produces 2.277 degree units 10

more than the proposed work for measurement of knee angles 11

and 95% differences are within dk ± 1.96sk. Thus, both the 12

cases suggest that the null hypothesis is true i.e., no significant 13

difference between the proposed and the exemplar Kinect 14

systems are found while measuring knee angles, and the pro- 15

posed model could be easily deployed for 3D motion and gait 16

measurement across multiple rooms for remote measurement, 17

ad-hoc and local care deployment. 18
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(a) B&A plot of knee angles
from normal gaits.

(b) B&A plot of knee angles
from abnormal gaits.

Fig. 6: B&A plot of obtained knee angles experimented in
anechoic chamber.

B. Machine Learning Outcomes 19

Training of investigated ML and DL has been initiated with 20

5% randomly selected data and varied up to 95%. Initially, 21

the investigation employed the kNN classifier [32] for its 22

simplicity and as it does not require any assumption of data 23

distribution for decision making. Here, the k is varied from 1 24

to 5 and kNN k = 1 produces the highest accuracy among 25

other NNs with 75% of training data volume. It attained 26

a testing accuracy of 94.90% (shown in Figure 7a). The 27

kNNM produced the highest sensitivity among the three kNNs 28

with 50% training data. Sensitivity measures the ability of 29

the prototype to identify abnormal gait and the maximum 30

sensitivity achieved among kNNs is 97.80% (shown in Figure 31

7b) in the case of k = 3. It produces fewer false positives 32

near the decision boundary resulting in improved sensitivity 33

over kNNF and kNNC ; also, truly positive abnormality pre- 34

dictions and vice versa. However, kNNF achieved significant 35

performance in the case of all three metrics, where accuracy, 36

sensitivity, and specificity are 94.90% (shown in Figure 7a), 37

96.40% (shown in Figure 7b), and 92% (shown in Figure 7c). 38

Balance between the metrics indicates that kNNF can classify 39

both normal and abnormal patterns with approximately the 40

same high precision. Therefore, kNNF demonstrates a better 41

overall performance than the other tested NNs. 42

Subsequently, the SVM is investigated with two different 43

kernel functions to acquire the hyperplane that can separate 44



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Training Data (%)

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

kNN
C

kNN
F

kNN
M

SVM
L

SVM
Q

Deep MLP

(a) Accuracy

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Training Data (%)

0

10

20

30

40

50

60

70

80

90

100

S
en

si
ti

v
it

y
 (

%
)

kNN
C

kNN
F

kNN
M

SVM
L

SVM
Q

Deep MLP

(b) Sensitivity

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Training Data (%)

0

10

20

30

40

50

60

70

80

90

100

S
p

ec
if

ic
it

y
 (

%
)

kNN
C

kNN
F

kNN
M

SVM
L

SVM
Q

Deep MLP

(c) Specificity

Fig. 7: Comparison of classification performance obtained
from different algorithms.

participants with normal and abnormal gait patterns using the 1

proposed UWB gait prototype. Figures 7a, 7b, and 7c show 2

the classification results of the 2 subject types where, SVML 3

and SVMQ represent the SVMs using the linear and quadratic 4

kernel functions respectively for prediction. SVML uses the 5

optimization method, c =
∑
i

wik(si, x) + b where the UWB 6

gait pattern vector x has been targeted to classify, si is the 7

support vector, wi is weight, and b is the bias. Here, the linear 8

kernel function is k. The vector x is considered a member 9

of the normal gait group when, c ≥ 0, or in the abnormal 10

gait group otherwise. This creates a hyperplane that achieved 11

lower accuracy but better sensitivity. Among the implemented 12

SVMs, SVML produces the highest sensitivity of 99.60% 13

with 15% training data, shown in the Figure 7b, indicating 14

an acceptable efficient performance to identify abnormal gait 15

among both kNNs and SVMs. However, specificity is 41.90% 16

(shown in Figure 7c) demonstrating a weaker performance in 17

identifying persons with normal gait, though the probability 18

in identifying abnormal gaits is better in this case. SVMQ 19

has been employed to obtain an improved testing accuracy 20

to differentiate normal and abnormal gaits by minimizing the 21

gap between two groups. The considered quadratic function 22

is minx
1
2x

THx + cTx, where Ax ≤ b, c is a real valued 23

vector, H is real symmetric matrix, A is real matrix, b is a 24

real vector, and the notation Ax ≤ b means that every entry 25

of the vector Ax is less than or equal to the corresponding 26

entry of the vector b. The quadratic programming aims to 27

discover the vector x which could minimize that function. The 28

cross validation has also been implemented for experiment 29

with SVMQ. The model creates a hyperplane to classify gait 30

subjects and achieved maximum testing accuracy of 91.70%, 31

where sensitivity is 97.50% and specificity is 77.80% with 32

95% training data (shown in Figure 7a, 7b, and 7c) to identify 33

normal and abnormal subjects. A low number of abnormal 34

gaits are misclassified but the low specificity implies many 35

normal gait patterns are predicted wrongly as abnormal gaits 36

by the SVMQ i.e., the presence of true negatives. Thus, the 37

low specificity reduces SVMQ appropriateness for this study. 38

DMLP has been configured with four hidden layers with 39

288, 192, 144, and 115 neurons in first, second, third, and 40

fourth layer respectively. Adam optimization algorithm has 41

been employed and cross-entropy loss function has been 42

chosen as the proposed work is a two class classification task 43

with a regularisation parameter of 0.0001 and rectified linear 44

(ReLU) activation function. DMLP achieved a maximum 45

accuracy, sensitivity, and specificity of 90.90% (10% training 46

data), 71.30% (45% training data), and 99.32% (40% training 47

data) respectively (shown in Figures 7a, 7b, and 7c). The 48

specificity achieved by DMLP is the highest among all the 49

classifiers investigated here. 50

One issue which contributed to the high accuracy attained 51

by most of the algorithms but resulted in a variation in the 52

achieved sensitivity and specificity results is the skewness of 53

the dataset, i.e., only 20% of the dataset contains abnormal 54

UWB gait data. Concisely, kNNC , kNNF , kNNM , SVMQ, 55

and DMLP all attained high accuracy indicating greater correct 56

predictions out of the total number of predictions. But, the 57
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TABLE I: Comparison of gait recognition performance achieved by existing research and proposed study.

Gait Recognition
Models

Accuracy/
Rank-1 Accuracy Sensitivity Specificity Data Capturing

Device Focus

Wolf et. al. [11] 80.00% to 100.00% - - Camera Human identification
Tang et. al. [12] 51.40% to 95.10% - - Camera Human identification
Chen et. al. [13] 62.50% to 99.00% - - Camera Human identification

Thapar et. al. [14] 97.08% to 99.90% - - Camera Human identification
Battistone and Petrosino [15] 86.40% to 98.40% 93.70% - Camera Human identification

Zhang et. al. [17] 70.40% to 99.90% - - Camera Human identification
Chai et. al. [18] 97.60% - - Camera Human identification

Gupta [19] 71.00% to 92.00% - - Camera Human identification
Zhang et. al. [20] 71.80% to 95.40% - - Camera Human identification
Proposed work 94.90% 96.40% 91.40% IR-UWB Radar Gait health

decision boundaries are biased for either normal or abnormal1

gaits due to the data skewness. For example, kNNC , kNNF ,2

kNNM , SVML, and SVMQ attained high sensitivity, signi-3

fying correct abnormal gait recognition, whereas kNNF and4

DMLP achieved significantly higher specificity than the other5

algorithms indicating correct normal gait prediction. However,6

the proposed study aims to achieve balanced metrics (i.e.,7

high accuracy, sensitivity, and specificity) through one of the8

implemented classifiers. It becomes difficult to compute the9

orthogonal projection between the hyperplane and sample to10

obtain an optimal boundary for SVMs and update weights11

precisely for prediction purposes for deep MLP with a dispro-12

portioned dataset. However, the kNNs, particularly kNNF was13

not affected by the imbalance problem and is the one algorithm14

here that attained high scores for all the metrics. Though,15

kNNF follows a rudimentary or “lazy” approach the simple16

Euclidean distance computation from the nearest neighbour17

performed better to separate normal and abnormal gait and was18

found to be more efficient than the other tested classifiers. The19

kNNF performance demonstrates that abnormal and normal20

gait can be recognised based on the computed knee angles21

from 3D IR-UWB model even with a data imbalance situation22

exists.23

VIII. DISCUSSION & CONCLUSION24

The proposed gait recognition work here is the first study to25

investigate normal and abnormal gait patterns contemplating26

walking features from a 3D gait model without the use27

of markers, mobile inertial sensors, and/or cameras. Camera28

based 3D gait recognition research concentrate mainly on per-29

son identification in different circumstances, such as distinct30

viewing angles, with and without backpacks, occlusion by31

other objects, etc. However, the proposed work focuses on em-32

ploying such a system for scalable gait health purposes. Direct33

comparison between the performance of the proposed work34

and other camera-based works is difficult as they have different35

outcomes and testing requirements, but quantitative contrast36

can be made to understand the advantages of the proposed37

study. A comparison has been carried out and the summary38

shown in Table I, where most recent gait recognition studies39

(discussed in Section II) II) have been included with their40

accuracy or rank-1 accuracy, sensitivity, specificity, device41

used, and study focus. The accuracies of other algorithms have42

been reported with minimum and maximum values as found43

from their study. Accuracy and other metrics vary because44

persons are identified from different viewing angles, with or45

without bags, and occlusions. These studies largely rely on 1

accuracy only (except one study here) instead of sensitivity and 2

specificity. However, the measurement of both sensitivity (i.e., 3

identification of person with walking problem) and specificity 4

(i.e., identification of normal walk) are required for clinically 5

focused gait recognition tasks. kNNF attained optimal perfor- 6

mance (at 85% training data) with accuracy, sensitivity, and 7

specificity of 94.90%, 96.40%, and 91.40% respectively in that 8

case, demonstrating that kNNF can classify both normal and 9

abnormal gaits effectively when considering the knee angles 10

calculated from the 3D IR-UWB model. There are two phases 11

involved in this work; precise knee angle calculation and 12

classification of the persons gait based on their knee angle 13

variation. The first phase depends upon the IR-UWB radar and 14

the 3D model. IR-UWB radar operates with a sampling rate of 15

16.39 GHz and provides high resolution (9 mm approx.) time 16

domain signals of the motion scenario. These high-resolution 17

signals provide detailed upper and lower body (includes thigh 18

and shank) movement information. Subsequently, the knee 19

angles have been extracted from these signals. The second 20

phase considers unique knee angles as features to classify 21

normal and abnormal gait patterns. The contrast between 22

normal and abnormal knee angles are reflected accurately in 23

the angle calculation which assisted the recognition phase. 24

In that case, kNN performed well and produced optimal 25

performance with one (k=1) nearest neighbour. It has been 26

realized that simple Euclidean distance-based classification is 27

suitable for identifying gait patterns rather than using bound- 28

ary mapping and backpropagation algorithms. Practically, the 29

person identification studies require unique and person specific 30

features which help recognize the relevant person and needs 31

a large number of subjects to validate studies. Therefore, the 32

knowledge (or, features) cannot be shared with other persons. 33

However, in the case of the proposed work here, all the 34

available normal gaits and their knee angles are employed to 35

correctly classify one new normal gait pattern and all of the 36

available abnormal gaits, and their knee angles are utilized to 37

correctly classify one new abnormal gait. Thus, all the subjects 38

of a group contribute to recognize a new pattern of that group. 39

Hence, the knowledge (or knee angle features) can be shared 40

within the subject’s class. Thus, the feasibility of the study 41

can be validated with the reported number of subjects and the 42

performance of the proposed study is not affected even with 43

the dataset imbalance reported here. 44

The proposed work demonstrates a classification approach 45

to separate the normal and abnormal gait from 3D IR-UWB 46
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gait and motion capture model, which is a markerless, non-1

contact, privacy maintaining, and easily deployable system.2

In this study, the initially researched knee angles from IR-3

UWB have been employed as features to train and test the4

constructed model. This initial study demonstrates the feasi-5

bility of employing ML and DL to classify gait patterns, which6

does not include the type of gait abnormality. The participants7

of this study had normal or defined spastic gait characteristics.8

Thus, the experiment intended to classify normal and spastic9

gait patterns (abnormal gait group) based on knee angles,10

where empirically kNNF delivered optimal performance with11

respect to statistical performance metrics. More participants12

are now being recruited to establish generalized decisions13

regarding gait abnormality, extending this work further to14

identify the type of abnormality such as, spastic, scissors,15

propulsive, waddling, steppage gait automatically via ML.16

The performance may differ from present outcomes when17

other types of abnormal gaits are classified. The performance18

analysis indicates that the further work is required on the19

hyperplane created by nearest neighbour classifier function,20

thus the fine tuning of mechanisms such as, correlation of21

features within feature vector, distance metrics, and number22

of nearest neighbours would be subsequently observed.23
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