Synthesis and Utilisation of Hybrid Metal-Carbonic Anhydrase Enzyme Carrier System for Soil Biocementation

Journal article


Mwandira, W., Purchase, D., Mavroulidou, M. and Gunn, J. M. (2023). Synthesis and Utilisation of Hybrid Metal-Carbonic Anhydrase Enzyme Carrier System for Soil Biocementation. Applied Sciences. 13 (17), p. 9494. https://doi.org/10.3390/app13179494
AuthorsMwandira, W., Purchase, D., Mavroulidou, M. and Gunn, J. M.
Abstract

Biocementation is an emerging nature-inspired method of producing eco-friendly cement for soil stabilization. This paper used the bovine-derived carbonic anhydrase (CA) enzyme to catalyse the bioprecipitation of CaCO3 in a fine-grained soil and thus to biocement the soil. To increase the efficiency of the CA, an innovative copper–carbonic anhydrase (CA) hybrid was fabricated. This study is a proof-of-concept of the potential application of these enzyme carriers for soil bioce-mentation. The hybrid carriers are aimed to enhance the stability, recovery and reusability of the enzyme used in the biocementation process. The results showed that the fabricated copper phosphate-based inorganic hybrid was stable throughout the duration of the tests (2 months) and under a wide range of pH and temperatures. Its enzymatic activity was enhanced compared to the free CA enzyme and it was proved suitable for soil biocementation. This was further confirmed by the SEM analysis. Additionally, the treated soil with the formulated hybrid carrier showed im-proved unconfined compressive strength, especially when the carriers were implemented into the soil by mixing. The material analysis by Raman spectroscopy confirmed calcium carbonate as the primary precipitate, consistent with soil biocementation. Overall, this innovative method of de-livery of enzymes with enhanced stability and activity shows promise that, upon further devel-opment, it can be successfully used to increase the efficiency and sustainability of the biocemen-tation process.

Keywordscarbonic anhydrase; enzyme carriers; ground improvement; biocementation; CO2 capture
Year2023
JournalApplied Sciences
Journal citation13 (17), p. 9494
PublisherMDPI
ISSN2076-3417
Digital Object Identifier (DOI)https://doi.org/10.3390/app13179494
Web address (URL)https://www.mdpi.com/2076-3417/13/17/9494
Publication dates
Online22 Aug 2023
Publication process dates
Accepted19 Aug 2023
Deposited29 Aug 2023
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/94w96

Download files


Publisher's version
applsci-13-09494.pdf
License: CC BY 4.0
File access level: Open

  • 2
    total views
  • 3
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

An electrokinetic-biocementation study for clay stabilisation using carbonic anhydrase-producing bacteria
Mwandira, W., Mavroulidou, M., Satheesh, S., Gunn, M.J., Gray, C., Purchase, D. and Garelick, J. (2023). An electrokinetic-biocementation study for clay stabilisation using carbonic anhydrase-producing bacteria. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29817-7
The Potential Use of Food Waste in Biocementation Process for Eco-Efficient Construction Materials
Mwandira, W., Mavroulidou, M., Gunn, M., Garelick, H. and Purchase, D. (2022). The Potential Use of Food Waste in Biocementation Process for Eco-Efficient Construction Materials. in: Wong, M.H., Purchase, D. and Dickinson, N. (ed.) Food Waste Valorisation World Scientific Publishing.
Biocementation through the carbonic anhydrase (CA) activity of microorganisms -A review
Mwandira, W., Mavroulidou, M., Gunn, M., H. Garelick and D. Purchase (2022). Biocementation through the carbonic anhydrase (CA) activity of microorganisms -A review. 9th International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2022) and SECOTOX Conference. Mykonos, Greece 03 - 09 Jun 2022
Chapter 13 - Stabilization/solidification of mining waste via biocementation
Mwandira, W., Nakashima, N. and Kawasaki, S. (2022). Chapter 13 - Stabilization/solidification of mining waste via biocementation. in: Tsang, D.C.W and Wang, L. (ed.) Low Carbon Stabilization and Solidification of Hazardous Wastes Elsevier. pp. 201-209
Artificial Fusion Protein to Facilitate Calcium Carbonate Mineralization on Insoluble Polysaccharide for Efficient Biocementation
Nawarathna, T.H.K, Nakashima, K., Kawabe, T., Mwandira, W., Kurumisawa, k. and Kawasaki, S. (2022). Artificial Fusion Protein to Facilitate Calcium Carbonate Mineralization on Insoluble Polysaccharide for Efficient Biocementation. ACS Sustainable Chemistry & Engineering. 9 (34), p. 11493–11502. https://doi.org/10.1021/acssuschemeng.1c03730
Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine
Mwandira, W., Nakashima. K., Kawasaki, S, Arabelo, A., Banda, K., Nyambe, I., Chirwa, M., Ito, M., Sato, T., Igarashi, T., Nakayama, N., Hakuto, N. and Ishizuka, M (2022). Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Scientific Reports. 10 (21189). https://doi.org/10.1038/s41598-020-78187-4
Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand
Mwandira, W., Nakashima, K. and Kawasaki, S. (2022). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering. 109 (Part A), pp. 57-64. https://doi.org/10.1016/j.ecoleng.2017.09.011
Alkali-activated slag concrete with paper industry waste
Mavroulidou, M. and Shah, Shamil (2021). Alkali-activated slag concrete with paper industry waste. Waste Management & Research: The Journal for a Sustainable Circular Economy. 39 (3), pp. 466-472. https://doi.org/10.1177/0734242x20983890
Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia
Banda, K.E., Mwandira, W., Jakobsen, R., Ogola, J., Nyambe, I. and Larsen, F. (2019). Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia. Journal of African Earth Sciences. 153, pp. 72-82. https://doi.org/10.1016/j.jafrearsci.2019.02.022
Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia
Mwandira, W., Nakashima. K., Kawasaki, S., Ito, M., Sato, T., Igarashi, T., Banda, K., Chirwa, M., Nyambe, I., Nakayama, N., Hakuto, N. and Ishizuka, M. (2019). Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. Chemosphere. 228, pp. 17-25. https://doi.org/10.1016/j.chemosphere.2019.04.107
Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp.
Mwandira, W., Nakashima. K., Kawasaki, s., Ito, M., Sato, T., Igarashi, T., Banda, K., Chirwa, M., Nyambe, I., Nakayama, N. and Ishizuka, M. (2019). Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp. Environmental Science and Pollution Research. 26, pp. 15653-15664. https://doi.org/10.1007/s11356-019-04984-8
Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water
Mwandira, W., Nakashima, K., Yuki, T., Sato, T. and Kawasaki, S. (2019). Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere. 246 (125733), pp. 1-7. https://doi.org/10.1016/j.chemosphere.2019.125733