Chapter 13 - Stabilization/solidification of mining waste via biocementation

Book chapter


Mwandira, W., Nakashima, N. and Kawasaki, S. (2022). Chapter 13 - Stabilization/solidification of mining waste via biocementation. in: Tsang, D.C.W and Wang, L. (ed.) Low Carbon Stabilization and Solidification of Hazardous Wastes Elsevier. pp. 201-209
AuthorsMwandira, W., Nakashima, N. and Kawasaki, S.
EditorsTsang, D.C.W and Wang, L.
Abstract

Bioremediation based on microbial induced carbonate precipitation is a recent technique that uses bacteria to both solidify and stabilize mine waste via biocementation. This technology offers a carbon-neutral option to Portland cement, polymers, and other additives that have been used for decades to stabilize hazardous mine waste. Its possible application in situ and various geographical locations give its good application prospects. This chapter discusses the use of biocementation as a heavy metal stabilization/solidification technique. It further elucidates the challenges and prospects of this technology before the actual application can be feasible for actual sites.

KeywordsBioremediation; hazardous; mine waste; biocementation; solidification; stabilization
Page range201-209
Year2022
Book titleLow Carbon Stabilization and Solidification of Hazardous Wastes
PublisherElsevier
File
License
All rights reserved
File Access Level
Open
ISBNISBN 9780128240045
Publication dates
Print14 Jan 2022
Publication process dates
Accepted14 Jan 2022
Deposited13 May 2022
Digital Object Identifier (DOI)https://doi.org/10.1016/B978-0-12-824004-5.00014-1
Web address (URL)https://www.sciencedirect.com/science/article/pii/B9780128240045000141
Permalink -

https://openresearch.lsbu.ac.uk/item/8zq87

Restricted files

File

  • 86
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Fruit and vegetable waste used as bacterial growth media for the biocementation of two geomaterials.
Mwandira, W., Mavroulidou, M., Joshi, S. and Gunn, M.J. (2024). Fruit and vegetable waste used as bacterial growth media for the biocementation of two geomaterials. The Science of the total environment. 947, p. 174489. https://doi.org/10.1016/j.scitotenv.2024.174489
A study of bacteria producing carbonic anhydrase enzyme for CaCO3 precipitation and soil biocementation
Mwandira, W., Mavroulidou, M., Timmermans, M., Gunn, M., Gray, C., Pantoja-Muñoz, L. and Purchase, D. (2024). A study of bacteria producing carbonic anhydrase enzyme for CaCO3 precipitation and soil biocementation . Environmental Science and Pollution Research. 31, p. 45818–45833. https://doi.org/10.1007/s11356-024-34077-0
Experiments and modelling of soil biocementation using the carbonic anhydrase metabolic pathway
Mwandira, W., Mavroulidou, M., Gunn, M. and Purchase, D. (2024). Experiments and modelling of soil biocementation using the carbonic anhydrase metabolic pathway. XVIII European Conference on Soil Mechanics and Geotechnical Engineering ECSMGE 2024. Lisbon, Portugal 30 Jul - 26 Aug 2024
Concurrent Carbon Capture and Biocementation through the Carbonic Anhydrase (CA) Activity of Microorganisms -a Review and Outlook, Environmental Processes
Mwandira, W., Mavroulidou, M., Gunn, M. and Purchase, D. (2023). Concurrent Carbon Capture and Biocementation through the Carbonic Anhydrase (CA) Activity of Microorganisms -a Review and Outlook, Environmental Processes. Environmental Processes. 10 (56). https://doi.org/10.1007/s40710-023-00667-2
An electrokinetic-biocementation study for clay stabilisation using carbonic anhydrase-producing bacteria
Mwandira, W., Mavroulidou, M., Satheesh, S., Gunn, M.J., Gray, C., Purchase, D. and Garelick, J. (2023). An electrokinetic-biocementation study for clay stabilisation using carbonic anhydrase-producing bacteria. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29817-7
Synthesis and Utilisation of Hybrid Metal-Carbonic Anhydrase Enzyme Carrier System for Soil Biocementation
Mwandira, W., Purchase, D., Mavroulidou, M. and Gunn, J. M. (2023). Synthesis and Utilisation of Hybrid Metal-Carbonic Anhydrase Enzyme Carrier System for Soil Biocementation. Applied Sciences. 13 (17), p. 9494. https://doi.org/10.3390/app13179494
Use of fruit and vegetable waste as growth media in bacterial biocementation for ground improvement applications
Mwandira, W., Mavroulidou, M., Gunn, M. and Gray, C. (2023). Use of fruit and vegetable waste as growth media in bacterial biocementation for ground improvement applications. 18th International Conference on Environmental Science and Technology CEST2023. Athens, GREECE 30 Aug - 02 Sep 2023 CEST.
Synthesis, characterisation, and utilisation of copper nanoflower for biocementation for ground improvement applications
Mwandira, W., Purchase, D., Gunn, M.J. and Mavroulidou, M. (2023). Synthesis, characterisation, and utilisation of copper nanoflower for biocementation for ground improvement applications. 9th International Congress on Environmental Geotechnics. Chania, Crete island, Greece 25 Jun - 28 Jul 2023
Biocementation mediated by native Carbonic Anhydrase-producing microbes.
Mwandira, W., Mavroulidou, M., Gunn, M.J., Garelick, J. and Purchase, D. (2023). Biocementation mediated by native Carbonic Anhydrase-producing microbes. 10th Environmental Management, Engineering, Planning and Economics (CEMEPE 2023) and SECOTOX Conference. Skiathos island, Greece. 05 - 09 Jun 2023 CEMEPE.
Electrokinetic stabilisation of peat using biobased ground improvement technique
Mwandira, W., Mavroulidou, M., Gunn, M.J., Safdar, M.U., Garelick, J., Garelick, H. and Purchase, D. (2022). Electrokinetic stabilisation of peat using biobased ground improvement technique. The 18th International Symposium on Electrokinetic Remediation. Le Havre, France. 20 - 22 Sep 2022
The Potential Use of Food Waste in Biocementation Process for Eco-Efficient Construction Materials
Mwandira, W., Mavroulidou, M., Gunn, M., Garelick, H. and Purchase, D. (2022). The Potential Use of Food Waste in Biocementation Process for Eco-Efficient Construction Materials. in: Wong, M.H., Purchase, D. and Dickinson, N. (ed.) Food Waste Valorisation World Scientific Publishing.
Biocementation through the carbonic anhydrase (CA) activity of microorganisms -A review
Mwandira, W., Mavroulidou, M., Gunn, M., H. Garelick and D. Purchase (2022). Biocementation through the carbonic anhydrase (CA) activity of microorganisms -A review. 9th International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2022) and SECOTOX Conference. Mykonos, Greece 03 - 09 Jun 2022
Artificial Fusion Protein to Facilitate Calcium Carbonate Mineralization on Insoluble Polysaccharide for Efficient Biocementation
Nawarathna, T.H.K, Nakashima, K., Kawabe, T., Mwandira, W., Kurumisawa, k. and Kawasaki, S. (2022). Artificial Fusion Protein to Facilitate Calcium Carbonate Mineralization on Insoluble Polysaccharide for Efficient Biocementation. ACS Sustainable Chemistry & Engineering. 9 (34), p. 11493–11502. https://doi.org/10.1021/acssuschemeng.1c03730
Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine
Mwandira, W., Nakashima. K., Kawasaki, S, Arabelo, A., Banda, K., Nyambe, I., Chirwa, M., Ito, M., Sato, T., Igarashi, T., Nakayama, N., Hakuto, N. and Ishizuka, M (2022). Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Scientific Reports. 10 (21189). https://doi.org/10.1038/s41598-020-78187-4
Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand
Mwandira, W., Nakashima, K. and Kawasaki, S. (2022). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering. 109 (Part A), pp. 57-64. https://doi.org/10.1016/j.ecoleng.2017.09.011
Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia
Banda, K.E., Mwandira, W., Jakobsen, R., Ogola, J., Nyambe, I. and Larsen, F. (2019). Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia. Journal of African Earth Sciences. 153, pp. 72-82. https://doi.org/10.1016/j.jafrearsci.2019.02.022
Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia
Mwandira, W., Nakashima. K., Kawasaki, S., Ito, M., Sato, T., Igarashi, T., Banda, K., Chirwa, M., Nyambe, I., Nakayama, N., Hakuto, N. and Ishizuka, M. (2019). Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. Chemosphere. 228, pp. 17-25. https://doi.org/10.1016/j.chemosphere.2019.04.107
Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp.
Mwandira, W., Nakashima. K., Kawasaki, s., Ito, M., Sato, T., Igarashi, T., Banda, K., Chirwa, M., Nyambe, I., Nakayama, N. and Ishizuka, M. (2019). Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp. Environmental Science and Pollution Research. 26, pp. 15653-15664. https://doi.org/10.1007/s11356-019-04984-8
Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water
Mwandira, W., Nakashima, K., Yuki, T., Sato, T. and Kawasaki, S. (2019). Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere. 246 (125733), pp. 1-7. https://doi.org/10.1016/j.chemosphere.2019.125733