Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand

Journal article


Mwandira, W., Nakashima, K. and Kawasaki, S. (2022). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological Engineering. 109 (Part A), pp. 57-64. https://doi.org/10.1016/j.ecoleng.2017.09.011
AuthorsMwandira, W., Nakashima, K. and Kawasaki, S.
Abstract

Lead (Pb2+) is a toxic heavy metal that has a severe negative effect on human health and the environment. Physical, chemical and biological remediation techniques have long been used to remediate lead contamination. However, because of the great danger posed by lead contamination, there is increasing interest to apply eco-friendly and sustainable methods to remediate lead. Therefore, this study was conducted to use the microbially induced calcium carbonate precipitation (MICP) technique in conjunction with the bacterium Pararhodobacter sp. to bioremediate lead. Laboratory scale experiments were conducted and complete removal of 1036 mg/L of Pb2+ was achieved. These results were further confirmed by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis, which indicated coprecipitation of calcium carbonate (CaCO3) and lead. The unconfined compressive strength increased with an increase in injection interval with maximum unconfined compressive strength of 1.33 MPa for fine sand, 2.87 MPa for coarse sand and 2.80 MPa for mixed sand. For Pararhodobacter sp. to efficiently induce lead immobilisation the bacterial interval required is four times with a calcium and urea concentration of 0.5 M and bacterial concentration of 109 cfu/mL. Very few low-cost in situ heavy metal treatment processes for lead bioremediation are available; therefore, bioimmobilization of lead by MICP has the potential for application as a low-cost and eco-friendly method for heavy metal remediation.

KeywordsBiomineral, Bioremediation, Microbially induced calcium carbonate precipitation, Lead
Year2022
JournalEcological Engineering
Journal citation109 (Part A), pp. 57-64
PublisherElsevier
ISSN0925-8574
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ecoleng.2017.09.011
Web address (URL)https://www.sciencedirect.com/science/article/pii/S092585741730530X
Publication dates
Print22 Sep 2017
Publication process dates
Accepted16 Sep 2017
Deposited29 Apr 2022
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8zq7q

Download files


Accepted author manuscript
Wilson_Mwandira_biomineral_bioremediation.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 65
    total views
  • 235
    total downloads
  • 3
    views this month
  • 4
    downloads this month

Export as

Related outputs

Concurrent Carbon Capture and Biocementation through the Carbonic Anhydrase (CA) Activity of Microorganisms -a Review and Outlook, Environmental Processes
Mwandira, W., Mavroulidou, M., Gunn, M. and Purchase, D. (2023). Concurrent Carbon Capture and Biocementation through the Carbonic Anhydrase (CA) Activity of Microorganisms -a Review and Outlook, Environmental Processes. Environmental Processes. 10 (56). https://doi.org/10.1007/s40710-023-00667-2
An electrokinetic-biocementation study for clay stabilisation using carbonic anhydrase-producing bacteria
Mwandira, W., Mavroulidou, M., Satheesh, S., Gunn, M.J., Gray, C., Purchase, D. and Garelick, J. (2023). An electrokinetic-biocementation study for clay stabilisation using carbonic anhydrase-producing bacteria. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29817-7
Synthesis and Utilisation of Hybrid Metal-Carbonic Anhydrase Enzyme Carrier System for Soil Biocementation
Mwandira, W., Purchase, D., Mavroulidou, M. and Gunn, J. M. (2023). Synthesis and Utilisation of Hybrid Metal-Carbonic Anhydrase Enzyme Carrier System for Soil Biocementation. Applied Sciences. 13 (17), p. 9494. https://doi.org/10.3390/app13179494
Use of fruit and vegetable waste as growth media in bacterial biocementation for ground improvement applications
Mwandira, W., Mavroulidou, M., Gunn, M. and Gray, C. (2023). Use of fruit and vegetable waste as growth media in bacterial biocementation for ground improvement applications. 18th International Conference on Environmental Science and Technology CEST2023. Athens, GREECE 30 Aug - 02 Sep 2023 CEST.
Synthesis, characterisation, and utilisation of copper nanoflower for biocementation for ground improvement applications
Mwandira, W., Purchase, D., Gunn, M.J. and Mavroulidou, M. (2023). Synthesis, characterisation, and utilisation of copper nanoflower for biocementation for ground improvement applications. 9th International Congress on Environmental Geotechnics. Chania, Crete island, Greece 25 Jun - 28 Jul 2023
Biocementation mediated by native Carbonic Anhydrase-producing microbes.
Mwandira, W., Mavroulidou, M., Gunn, M.J., Garelick, J. and Purchase, D. (2023). Biocementation mediated by native Carbonic Anhydrase-producing microbes. 10th Environmental Management, Engineering, Planning and Economics (CEMEPE 2023) and SECOTOX Conference. Skiathos island, Greece. 05 - 09 Jun 2023 CEMEPE.
Electrokinetic stabilisation of peat using biobased ground improvement technique
Mwandira, W., Mavroulidou, M., Gunn, M.J., Safdar, M.U., Garelick, J., Garelick, H. and Purchase, D. (2022). Electrokinetic stabilisation of peat using biobased ground improvement technique. The 18th International Symposium on Electrokinetic Remediation. Le Havre, France. 20 - 22 Sep 2022
The Potential Use of Food Waste in Biocementation Process for Eco-Efficient Construction Materials
Mwandira, W., Mavroulidou, M., Gunn, M., Garelick, H. and Purchase, D. (2022). The Potential Use of Food Waste in Biocementation Process for Eco-Efficient Construction Materials. in: Wong, M.H., Purchase, D. and Dickinson, N. (ed.) Food Waste Valorisation World Scientific Publishing.
Biocementation through the carbonic anhydrase (CA) activity of microorganisms -A review
Mwandira, W., Mavroulidou, M., Gunn, M., H. Garelick and D. Purchase (2022). Biocementation through the carbonic anhydrase (CA) activity of microorganisms -A review. 9th International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2022) and SECOTOX Conference. Mykonos, Greece 03 - 09 Jun 2022
Chapter 13 - Stabilization/solidification of mining waste via biocementation
Mwandira, W., Nakashima, N. and Kawasaki, S. (2022). Chapter 13 - Stabilization/solidification of mining waste via biocementation. in: Tsang, D.C.W and Wang, L. (ed.) Low Carbon Stabilization and Solidification of Hazardous Wastes Elsevier. pp. 201-209
Artificial Fusion Protein to Facilitate Calcium Carbonate Mineralization on Insoluble Polysaccharide for Efficient Biocementation
Nawarathna, T.H.K, Nakashima, K., Kawabe, T., Mwandira, W., Kurumisawa, k. and Kawasaki, S. (2022). Artificial Fusion Protein to Facilitate Calcium Carbonate Mineralization on Insoluble Polysaccharide for Efficient Biocementation. ACS Sustainable Chemistry & Engineering. 9 (34), p. 11493–11502. https://doi.org/10.1021/acssuschemeng.1c03730
Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine
Mwandira, W., Nakashima. K., Kawasaki, S, Arabelo, A., Banda, K., Nyambe, I., Chirwa, M., Ito, M., Sato, T., Igarashi, T., Nakayama, N., Hakuto, N. and Ishizuka, M (2022). Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Scientific Reports. 10 (21189). https://doi.org/10.1038/s41598-020-78187-4
Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia
Banda, K.E., Mwandira, W., Jakobsen, R., Ogola, J., Nyambe, I. and Larsen, F. (2019). Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia. Journal of African Earth Sciences. 153, pp. 72-82. https://doi.org/10.1016/j.jafrearsci.2019.02.022
Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia
Mwandira, W., Nakashima. K., Kawasaki, S., Ito, M., Sato, T., Igarashi, T., Banda, K., Chirwa, M., Nyambe, I., Nakayama, N., Hakuto, N. and Ishizuka, M. (2019). Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust: Case of the abandoned Kabwe Mine, Zambia. Chemosphere. 228, pp. 17-25. https://doi.org/10.1016/j.chemosphere.2019.04.107
Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp.
Mwandira, W., Nakashima. K., Kawasaki, s., Ito, M., Sato, T., Igarashi, T., Banda, K., Chirwa, M., Nyambe, I., Nakayama, N. and Ishizuka, M. (2019). Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp. Environmental Science and Pollution Research. 26, pp. 15653-15664. https://doi.org/10.1007/s11356-019-04984-8
Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water
Mwandira, W., Nakashima, K., Yuki, T., Sato, T. and Kawasaki, S. (2019). Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere. 246 (125733), pp. 1-7. https://doi.org/10.1016/j.chemosphere.2019.125733