Data science for assessing possible tax income manipulation: The case of Italy
Journal article
Ausloos, M., Cerqueti, R. and Mir, T.A. (2017). Data science for assessing possible tax income manipulation: The case of Italy. Chaos, Solitons and Fractals. 104, pp. 238-256. https://doi.org/10.1016/j.chaos.2017.08.012
Authors | Ausloos, M., Cerqueti, R. and Mir, T.A. |
---|---|
Abstract | This paper explores a real-world fundamental theme under a data science perspective. It specifically discusses whether fraud or manipulation can be observed in and from municipality income tax size distributions, through their aggregation from citizen fiscal reports. The study case pertains to official data obtained from the Italian Ministry of Economics and Finance over the period 2007–2011. All Italian (20) regions are considered. The considered data science approach concretizes in the adoption of the Benford first digit law as quantitative tool. Marked disparities are found, - for several regions, leading to unexpected “conclusions”. The most eye browsing regions are not the expected ones according to classical imagination about Italy financial shadow matters. |
Year | 2017 |
Journal | Chaos, Solitons and Fractals |
Journal citation | 104, pp. 238-256 |
Publisher | Elsevier BV |
ISSN | 0960-0779 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.chaos.2017.08.012 |
Publication dates | |
Nov 2017 | |
Online | 31 Aug 2017 |
Publication process dates | |
Accepted | 15 Aug 2017 |
Deposited | 09 Mar 2020 |
Accepted author manuscript | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/89301
Download files
118
total views273
total downloads1
views this month1
downloads this month