Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking.

Journal article


James, DC, Chesters, T, Sumners, DP, Cook, DP, Green, DA and Mileva, KN (2012). Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking. International Journal of Sports Medicine. 34 (5), pp. 438-443.
AuthorsJames, DC, Chesters, T, Sumners, DP, Cook, DP, Green, DA and Mileva, KN
Abstract

Interventions for strengthening intrinsic foot muscles may be beneficial for rehabilitation from overuse injuries. In this study the acute effects of high-frequency, low-intensity wide-pulse electrical stimulation (WPS) over an intrinsic muscle on subsequent foot function during walking was assessed in healthy participants. WPS was delivered to the m. abductor hallucis (m.AH) of the non-dominant foot during relaxed standing. 3-dimensional forefoot (FF)--rearfoot (RF) coordination was quantified with a vector coding technique within separate periods of the stance phase to study WPS functional effects on foot motion. 4 types of coordinative strategies between the FF and RF were interpreted and compared PRE-to-POST-WPS for both the experimental and control feet. Bilateral electromyography (EMG) from m.AH was analysed during the intervention period for evidence of acute neuromuscular adaptation. The results showed that WPS significantly modulated FF-RF coordination during mid-stance, indicative of a more stable foot. Specifically, a statistically significant increase in FF eversion with concomitant RF inversion in the frontal plane and RF-dominated adduction in the transverse plane was observed. Subject-specific increases in post-stimulus m.AH EMG activation were observed but this was not reflected in an overall group effect. It is concluded that the structural integrity of the foot during walking is enhanced following an acute session of WPS and that this mechanical effect is most likely due to stimulation induced post-tetanic potentiation of synaptic transmission.

Keywordsrehabilitation; wide-pulse electrical stimulation; foot; kinematic coupling; post-tetanic potentiation; Foot; Muscle, Skeletal; Humans; Electromyography; Walking; Analysis of Variance; Electric Stimulation; Adaptation, Physiological; Biomechanics; Adult; Female; Male; Adaptation, Physiological; Adult; Analysis of Variance; Biomechanical Phenomena; Electric Stimulation; Electromyography; Female; Foot; Humans; Male; Muscle, Skeletal; Walking; 1106 Human Movement And Sports Science; 0913 Mechanical Engineering; Sport Sciences
Year2012
JournalInternational Journal of Sports Medicine
Journal citation34 (5), pp. 438-443
PublisherLondon South Bank University
ISSN1439-3964
Digital Object Identifier (DOI)doi:10.1055/s-0032-1321893
Web address (URL)https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0032-1321893
Publication dates
Print11 Oct 2012
Publication process dates
Deposited31 May 2018
Accepted02 Jul 2012
Accepted author manuscript
License
CC BY 4.0
Permalink -

https://openresearch.lsbu.ac.uk/item/87965

  • 0
    total views
  • 1
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Related outputs

Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review
Campbell, M, Varley-Campbell, J, Fulford, J, Taylor, B, Mileva, K and Bowtell, J (2019). Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review. Sports Medicine.
Effect of Hypohydration on Peripheral and Corticospinal Excitability and Voluntary Activation
Bowtell, JL, Avenell, G, Hunter, SP and Mileva, KN (2013). Effect of Hypohydration on Peripheral and Corticospinal Excitability and Voluntary Activation. PLoS ONE. 8 (10), p. e77004.
Repeated sprint training in normobaric hypoxia
Cooke, K, Galvin, HM, Sumners, DP, Mileva, KN and Bowtell, JL (2013). Repeated sprint training in normobaric hypoxia. British Journal of Sports Medicine. 47, pp. i74-i79.
Gait-Initiation Onset Estimation During Sit-to-Walk Comparing Healthy Individuals and Ambulatory Community-Dwelling Stroke Survivors
Jones, GD, James, DC, Thacker, M, Perry, R and Green, DA (2019). Gait-Initiation Onset Estimation During Sit-to-Walk Comparing Healthy Individuals and Ambulatory Community-Dwelling Stroke Survivors. doi:10.18744/LSBU.002933
Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes
Mileva, K, Zaidell, L, James, DC, Bowtell, J, Pollock, RD, Newham, DJ and Sumners, DP (2019). Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes. Dose-Response. 17 (1).
Parameters that remain consistent independent of pausing before gait-initiation during normal rise-to-walk behaviour delineated by sit-to-walk and sit-to-stand-and-walk.
Jones, GD, James, DC, Thacker, M and Green, DA (2018). Parameters that remain consistent independent of pausing before gait-initiation during normal rise-to-walk behaviour delineated by sit-to-walk and sit-to-stand-and-walk. PLoS ONE. 13 (10).
Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: relevance of UK dietary recommendations.
Aytekin, N, Mileva, KN and Cunliffe, AD (2018). Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: relevance of UK dietary recommendations. Nutrition Research Reviews.
Coefficient of cross correlation analysis of kinematics during walking barefoot and in Vibram FiveFingers®
James, DC and Cook, D (2011). Coefficient of cross correlation analysis of kinematics during walking barefoot and in Vibram FiveFingers®. Footwear Science. 3 (SUP 1), pp. S79-S81.
Low-frequency accelerations over-estimate impact-related shock during walking.
James, DC, Mileva, KN and Cook, DP (2014). Low-frequency accelerations over-estimate impact-related shock during walking. Journal of Electromyography and Kinesiology. 24 (2), pp. 264-270.
The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.
James, DC, Farmer, LJ, Sayers, JB, Cook, DP and Mileva, KN (2015). The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study. Clinical Biomechanics. 30 (4), pp. 347-354.
47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle
James, DC, Mileva, KN and Solan, MC (2015). 47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle. British Journal of Sports Medicine. 49 (Suppl).
Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study
James, DC, Solan, MC and Mileva, KN (2018). Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study. Journal of Foot and Ankle Research. 11.
Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants.
Bowtell, JL, Mohr, M, Fulford, J, Jackman, SR, Ermidis, G, Krustrup, P and Mileva, KN (2018). Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants. Frontiers in Nutrition. 5, p. 6.
Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties.
McCrum, C, Oberländer, KD, Epro, G, Krauss, P, James, DC, Reeves, N and Karamanidis, K (2017). Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties. Clinical Physiology and Functional Imaging.
Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.
Black, MI, Jones, AM, Blackwell, JR, Bailey, SJ, Wylie, LJ, McDonagh, STJ, Thompson, C, Kelly, J, Sumners, P, Mileva, KN, Bowtell, JL and Vanhatalo, A (2017). Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. Journal of Applied Physicology (1985). 122 (3), pp. 446-459.
Sit-to-stand-and-walk from 120% knee height: A novel approach to assess dynamic postural control independent of lead-limb
Jones, GD, James, DC, Thacker, M and Green, DA (2016). Sit-to-stand-and-walk from 120% knee height: A novel approach to assess dynamic postural control independent of lead-limb. Journal of Visualized Experiments. 2016 (114).
Sit-to-walk and sit-to-stand-and-walk task dynamics are maintained during rising at an elevated seat-height independent of lead-limb in healthy individuals
Jones, GD, James, DC, Thacker, M, Jones, EJ and Green, DA (2016). Sit-to-walk and sit-to-stand-and-walk task dynamics are maintained during rising at an elevated seat-height independent of lead-limb in healthy individuals. Gait and Posture. 48 (July), pp. 226 - 229.