Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: A feasibility study
Journal article
James, D.C., Solan, M.C., Mileva, K.N. and James, D. (2018). Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: A feasibility study. Journal of Foot and Ankle Research. 11. https://doi.org/10.1186/s13047-018-0258-1
Authors | James, D.C., Solan, M.C., Mileva, K.N. and James, D. |
---|---|
Abstract | Background: Strengthening the intrinsic foot muscles is a poorly understood and largely overlooked area. In this study, we explore the feasibility of strengthening m. abductor hallucis (AH) with a specific paradigm of neuromuscular electrical stimulation; one which is low-intensity in nature and designed to interleave physiologically-relevant low frequency stimulation with high-frequencies to enhance effective current delivery to spinal motoneurones, and enable a proportion of force produced by the target muscle to be generated from a central origin. We use standard neurophysiological measurements to evaluate the acute (~ 30 min) peripheral and central adaptations in healthy individuals. Methods: The AH in the dominant foot of nine healthy participants was stimulated with 24 × 15 s trains of square wave (1 ms), constant current (150% of motor threshold), alternating (20 Hz-100 Hz) neuromuscular electrical stimulation interspersed with 45 s rest. Prior to the intervention, peripheral variables were evoked from the AH compound muscle action potential (Mwave) and corresponding twitch force in response to supramaximal (130%) medial plantar nerve stimulation. Central variables were evoked from the motor evoked potential (MEP) in response to suprathreshold (150%) transcranial magnetic stimulation of the motor cortex corresponding to the AH pathway. Follow-up testing occurred immediately, and 30 min after the intervention. In addition, the force-time-integrals (FTI) from the 1st and 24th WPHF trains were analysed as an index of muscle fatigue. All variables except FTI (T-test) were entered for statistical analysis using a single factor repeated measures ANOVA with alpha set at 0.05. Results: FTI was significantly lower at the end of the electrical intervention compared to that evoked by the first train (p < 0.01). Only significant peripheral nervous system adaptations were observed, consistent with the onset of low-frequency fatigue in the muscle. In most of these variables, the effects persisted for 30 min after the intervention. Conclusions: An acute session of wide-pulse, high-frequency, low-intensity electrical stimulation delivered directly to abductor hallucis in healthy feet induces muscle fatigue via adaptations at the peripheral level of the neuromuscular system. Our findings would appear to represent the first step in muscle adaptation to training; therefore, there is potential for using WPHF for intrinsic foot muscle strengthening. |
Keywords | Abductor hallucis; M-wave; Motor evoked potential; Muscle fatigue; Neuromuscular electrical stimulation; Stimulation frequency; Clinical Sciences; Human Movement And Sports Science; Complementary And Alternative Medicine |
Year | 2018 |
Journal | Journal of Foot and Ankle Research |
Journal citation | 11 |
Publisher | BMC |
ISSN | 1757-1146 |
Digital Object Identifier (DOI) | https://doi.org/10.1186/s13047-018-0258-1 |
Web address (URL) | http://www.scopus.com/inward/record.url?eid=2-s2.0-85046403258&partnerID=MN8TOARS |
Funder/Client | British Orthopaedic Foot and Ankle Society |
Publication dates | |
03 May 2018 | |
2018 | |
Publication process dates | |
Deposited | 24 May 2018 |
Accepted | 19 Apr 2018 |
Publisher's version | License |
https://openresearch.lsbu.ac.uk/item/86qzz
Download files
200
total views163
total downloads2
views this month1
downloads this month