Interjoint Coordination in Kicking a Moving Target: A Comparison Between Elite and Nonelite Taekwondo Players.

Journal article


Straiotto, B.G., Cook, D.P., James, D.C. and Seeley, P.J. (2021). Interjoint Coordination in Kicking a Moving Target: A Comparison Between Elite and Nonelite Taekwondo Players. Journal of Applied Biomechanics. https://doi.org/10.1123/jab.2020-0359
AuthorsStraiotto, B.G., Cook, D.P., James, D.C. and Seeley, P.J.
AbstractPatterns of interjoint coordination in the kicking legs of taekwondo players were investigated to understand movement pattern variability as a functional property of skill level. Elite and nonelite players performed roundhouse kicks against a custom-built moving target fitted with an accelerometer, and movements were recorded by motion capture. Average foot segment velocities of 13.6 and 11.4 m/s were recorded for elite and nonelite players, respectively (P < .05), corresponding to target accelerations of 87.5 and 70.8g (P < .05). Gradient values derived from piecewise linear regression of continuous relative phase curves established the comparative incoordination of nonelite taekwondo players in the form of an overshoot behavior during the crucial period leading to target impact (P < .05). This overshoot was apparent in both knee-hip and ankle-knee continuous relative phase curves. Elite players generated greater limb speed and impact force through more effective limb segment coordination. The combination of continuous relative phase and piecewise linear regression techniques allowed identification of alternate joint control approaches in the 2 groups.
Keywordsroundhouse kick; piecewise linear regression; continuous relative phase; variability
Year2021
JournalJournal of Applied Biomechanics
PublisherHuman Kinetics
ISSN1543-2688
Digital Object Identifier (DOI)https://doi.org/10.1123/jab.2020-0359
Publication dates
Online23 Oct 2021
Publication process dates
Accepted12 Aug 2021
Deposited18 Nov 2021
Accepted author manuscript
License
File Access Level
Open
Page range1-9
Permalink -

https://openresearch.lsbu.ac.uk/item/8yq38

Download files


Accepted author manuscript
JAB.2020-0359 jamesd6.pdf
License: CC BY 4.0
File access level: Open

  • 111
    total views
  • 370
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

Recurrance analysis discriminates martial art performance patterns
Straiotto, B.G., Marwan, N, Seeley, P.J. and James, D.C. (2023). Recurrance analysis discriminates martial art performance patterns. The European Physical Journal Special Topics. 232 (1), pp. 151-59. https://doi.org/10.1140/epjs/s11734-022-00684-6
Impact of different mechanical and metabolic stimuli on the temporal dynamics of muscle strength adaptation
Lambrianides, Y., Epro, G., Smith, K., Mileva, K., James, D. and Karamanidis, K. (2022). Impact of different mechanical and metabolic stimuli on the temporal dynamics of muscle strength adaptation. Journal of strength and conditioning research. 36 (11), pp. 3246-3255. https://doi.org/10.1519/JSC.0000000000004300
Reliability and Accuracy of a Time-Efficient Method for the Assessment of Achilles Tendon Mechanical Properties by Ultrasonography
Hunter, S., Werth, J., Werth, J., Lambrianides, Y., Smith, K., Karamanidis, K. and Epro, G. (2022). Reliability and Accuracy of a Time-Efficient Method for the Assessment of Achilles Tendon Mechanical Properties by Ultrasonography. Sensors. 22 (7), p. e2549. https://doi.org/10.3390/s22072549
A voluntary activation deficit in m. abductor hallucis exists in asymptomatic feet.
Perez Olivera, A., Solan, M.C, Karamanidis, K., Mileva, K.N. and James, D. (2021). A voluntary activation deficit in m. abductor hallucis exists in asymptomatic feet. Journal of Biomechanics. 130, p. 110863. https://doi.org/10.1016/j.jbiomech.2021.110863
Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running.
AminiAghdam, S., Epro, G., James, D. and Karamanidis, K. (2021). Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running. Journal of strength and conditioning research. https://doi.org/10.1519/JSC.0000000000004128
Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters.
Epro, G., König, M., James, D., Lambrianides, Y, Werth, J., Hunter, S and Karamanidis, K. (2021). Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters. Journal of Biomechanics. 120, p. 110364. https://doi.org/S0021-9290(21)00144-5
Identifying consistent biomechanical parameters across rising-to-walk subtasks to inform rehabilitation in practice: A systematic literature review
Jones, GD, Jones, GL, James, DC, Thacker, M and Green, DA (2021). Identifying consistent biomechanical parameters across rising-to-walk subtasks to inform rehabilitation in practice: A systematic literature review. Gait and Posture. 83, pp. 67-82. https://doi.org/10.1016/j.gaitpost.2020.10.001
Inter-Limb Mechanical Properties of the Triceps Surae Muscle-Tendon Unit in Master Sprinters
Lambrianides, Y., Epro, G., König, M., James, D., Hunter, S. and Karamanidis, K. (2020). Inter-Limb Mechanical Properties of the Triceps Surae Muscle-Tendon Unit in Master Sprinters.
Direct muscle electrical stimulation as a method for the in vivo assessment of force production in m. abductor hallucis
Olivera, A.L.P., Alzapiedi, D.F., Solan, M.C., Karamanidis, K., Mileva, K. and James, D.C. (2020). Direct muscle electrical stimulation as a method for the in vivo assessment of force production in m. abductor hallucis. Journal of Biomechanics. 100, p. 109606. https://doi.org/10.1016/j.jbiomech.2020.109606
Gait-initiation onset estimation during sit-towalk: Recommended methods suitable for healthy individuals and ambulatory community-dwelling stroke survivors
Jones, GD, James, D., Thacker, M., Perry, R and Green, DA (2019). Gait-initiation onset estimation during sit-towalk: Recommended methods suitable for healthy individuals and ambulatory community-dwelling stroke survivors. PLoS ONE. 14 (5). https://doi.org/10.1371/journal.pone.0217563
Gait-Initiation Onset Estimation During Sit-to-Walk Comparing Healthy Individuals and Ambulatory Community-Dwelling Stroke Survivors
Jones, GD, James, DC, Thacker, M, Perry, R and Green, DA (2019). Gait-Initiation Onset Estimation During Sit-to-Walk Comparing Healthy Individuals and Ambulatory Community-Dwelling Stroke Survivors. https://doi.org/10.18744/LSBU.002933
Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes
Zaidell, L., Mileva, K., James, D.C., Bowtell, J., Pollock, R.D., Newham, D.J. and Sumners, D.P. (2019). Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes. Dose-Response. 17 (1). https://doi.org/10.1177/1559325818819946
Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: A feasibility study
James, D.C., Solan, M.C., Mileva, K.N. and James, D. (2018). Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: A feasibility study. Journal of Foot and Ankle Research. 11. https://doi.org/10.1186/s13047-018-0258-1
Parameters that remain consistent independent of pausing before gait-initiation during normal rise-to-walk behaviour delineated by sit-to-walk and sit-to-stand-and-walk.
Jones, GD, James, DC, Thacker, M and Green, DA (2018). Parameters that remain consistent independent of pausing before gait-initiation during normal rise-to-walk behaviour delineated by sit-to-walk and sit-to-stand-and-walk. PLoS ONE. 13 (10). https://doi.org/10.1371/journal.pone.0205346
Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties.
McCrum, C, Oberländer, KD, Epro, G, Krauss, P, James, DC, Reeves, N and Karamanidis, K (2017). Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties. Clinical Physiology and Functional Imaging. 38 (3), pp. 517-523. https://doi.org/10.1111/cpf.12472
Sit-to-walk and sit-to-stand-and-walk task dynamics are maintained during rising at an elevated seat-height independent of lead-limb in healthy individuals
Jones, GD, James, DC, Thacker, M, Jones, EJ and Green, DA (2016). Sit-to-walk and sit-to-stand-and-walk task dynamics are maintained during rising at an elevated seat-height independent of lead-limb in healthy individuals. Gait and Posture. 48 (July), pp. 226 - 229. https://doi.org/10.1016/j.gaitpost.2016.06.005
Sit-to-stand-and-walk from 120% knee height: A novel approach to assess dynamic postural control independent of lead-limb
Jones, GD, James, DC, Thacker, M and Green, DA (2016). Sit-to-stand-and-walk from 120% knee height: A novel approach to assess dynamic postural control independent of lead-limb. Journal of Visualized Experiments. 2016 (114). https://doi.org/10.3791/54323
The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.
James, DC, Farmer, LJ, Sayers, JB, Cook, DP and Mileva, K. (2015). The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study. Clinical Biomechanics. 30 (4), pp. 347-354. https://doi.org/10.1016/j.clinbiomech.2015.02.016
47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle
James, DC, Mileva, K. and Solan, MC (2015). 47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle. British Journal of Sports Medicine. 49 (Suppl). https://doi.org/10.1136/bjsports-2015-095573.47
Low-frequency accelerations over-estimate impact-related shock during walking.
James, DC, Mileva, K. and Cook, DP (2014). Low-frequency accelerations over-estimate impact-related shock during walking. Journal of Electromyography and Kinesiology. 24 (2), pp. 264-270. https://doi.org/10.1016/j.jelekin.2013.12.008
Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking.
James, D.C., Chesters, T., Sumners, D.P., Cook, D.P., Green, D.A. and Mileva, K. (2012). Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking. International Journal of Sports Medicine. 34 (5), pp. 438-443. https://doi.org/10.1055/s-0032-1321893
Coefficient of cross correlation analysis of kinematics during walking barefoot and in Vibram FiveFingers®
James, DC and Cook, D (2011). Coefficient of cross correlation analysis of kinematics during walking barefoot and in Vibram FiveFingers®. Footwear Science. 3 (SUP 1), pp. S79-S81. https://doi.org/10.1080/19424280.2011.575401