Recurrance analysis discriminates martial art performance patterns

Journal article


Straiotto, B.G., Marwan, N, Seeley, P.J. and James, D.C. (2023). Recurrance analysis discriminates martial art performance patterns. The European Physical Journal Special Topics. 232 (1), pp. 151-59. https://doi.org/10.1140/epjs/s11734-022-00684-6
AuthorsStraiotto, B.G., Marwan, N, Seeley, P.J. and James, D.C.
Abstract

We aimed to determine whether the combined application of principal components and recurrence quantification analyses might serve to discriminate both spatial and temporal differences between backwards-forwards movement patterns. Elite (n = 9) and nonelite (n = 9) martial artists were recorded using motion capture techniques and features of whole-body movement defined at the segment level were investigated by principal components analysis. For both groups of subjects, four movement components explained > 90% of the variability in the data. Given our interest in temporal patterning, the time series derived from scores for each of the principal components were subsequently subjected to recurrence quantification analysis, participant by participant. For the first movement component, statistically significant differences between groups were detected for the recurrence measure determinism (p < 0.05). For the third movement component, statistically significant differences were detected for the recurrence measures laminarity and maxline (p < 0.01). Hence use of a combination of principal components and recurrence techniques revealed quantitative differences between movements of the two subject groups, differences that may represent more skilled motor control in the elite group related to the functional importance of these apparently simple movement patterns.

Year2023
JournalThe European Physical Journal Special Topics
Journal citation232 (1), pp. 151-59
PublisherSpringer
ISSN1951 6401
Digital Object Identifier (DOI)https://doi.org/10.1140/epjs/s11734-022-00684-6
Web address (URL)https://link.springer.com/article/10.1140/epjs/s11734-022-00684-6
Publication dates
Online10 Oct 2022
Publication process dates
Accepted27 Sep 2022
Deposited12 May 2023
Accepted author manuscript
License
File Access Level
Open
Additional information

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1140/epjs/s11734-022-00684-6

Permalink -

https://openresearch.lsbu.ac.uk/item/93w7y

Download files


Accepted author manuscript
Straiotto et al. accepted Ms.pdf
License: Springer Bespoke License
File access level: Open

  • 72
    total views
  • 25
    total downloads
  • 6
    views this month
  • 3
    downloads this month

Export as

Related outputs

Impact of different mechanical and metabolic stimuli on the temporal dynamics of muscle strength adaptation
Lambrianides, Y., Epro, G., Smith, K., Mileva, K., James, D. and Karamanidis, K. (2022). Impact of different mechanical and metabolic stimuli on the temporal dynamics of muscle strength adaptation. Journal of strength and conditioning research. 36 (11), pp. 3246-3255. https://doi.org/10.1519/JSC.0000000000004300
Reliability and Accuracy of a Time-Efficient Method for the Assessment of Achilles Tendon Mechanical Properties by Ultrasonography
Hunter, S., Werth, J., Werth, J., Lambrianides, Y., Smith, K., Karamanidis, K. and Epro, G. (2022). Reliability and Accuracy of a Time-Efficient Method for the Assessment of Achilles Tendon Mechanical Properties by Ultrasonography. Sensors. 22 (7), p. e2549. https://doi.org/10.3390/s22072549
A voluntary activation deficit in m. abductor hallucis exists in asymptomatic feet.
Perez Olivera, A., Solan, M.C, Karamanidis, K., Mileva, K.N. and James, D. (2021). A voluntary activation deficit in m. abductor hallucis exists in asymptomatic feet. Journal of Biomechanics. 130, p. 110863. https://doi.org/10.1016/j.jbiomech.2021.110863
Interjoint Coordination in Kicking a Moving Target: A Comparison Between Elite and Nonelite Taekwondo Players.
Straiotto, B.G., Cook, D.P., James, D.C. and Seeley, P.J. (2021). Interjoint Coordination in Kicking a Moving Target: A Comparison Between Elite and Nonelite Taekwondo Players. Journal of Applied Biomechanics. https://doi.org/10.1123/jab.2020-0359
Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running.
AminiAghdam, S., Epro, G., James, D. and Karamanidis, K. (2021). Leaning the Trunk Forward Decreases Patellofemoral Joint Loading During Uneven Running. Journal of strength and conditioning research. https://doi.org/10.1519/JSC.0000000000004128
Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters.
Epro, G., König, M., James, D., Lambrianides, Y, Werth, J., Hunter, S and Karamanidis, K. (2021). Evidence that ageing does not influence the uniformity of the muscle-tendon unit adaptation in master sprinters. Journal of Biomechanics. 120, p. 110364. https://doi.org/S0021-9290(21)00144-5
Identifying consistent biomechanical parameters across rising-to-walk subtasks to inform rehabilitation in practice: A systematic literature review
Jones, GD, Jones, GL, James, DC, Thacker, M and Green, DA (2021). Identifying consistent biomechanical parameters across rising-to-walk subtasks to inform rehabilitation in practice: A systematic literature review. Gait and Posture. 83, pp. 67-82. https://doi.org/10.1016/j.gaitpost.2020.10.001
Inter-Limb Mechanical Properties of the Triceps Surae Muscle-Tendon Unit in Master Sprinters
Lambrianides, Y., Epro, G., König, M., James, D., Hunter, S. and Karamanidis, K. (2020). Inter-Limb Mechanical Properties of the Triceps Surae Muscle-Tendon Unit in Master Sprinters.
Direct muscle electrical stimulation as a method for the in vivo assessment of force production in m. abductor hallucis
Olivera, A.L.P., Alzapiedi, D.F., Solan, M.C., Karamanidis, K., Mileva, K. and James, D.C. (2020). Direct muscle electrical stimulation as a method for the in vivo assessment of force production in m. abductor hallucis. Journal of Biomechanics. 100, p. 109606. https://doi.org/10.1016/j.jbiomech.2020.109606
Gait-initiation onset estimation during sit-towalk: Recommended methods suitable for healthy individuals and ambulatory community-dwelling stroke survivors
Jones, GD, James, D., Thacker, M., Perry, R and Green, DA (2019). Gait-initiation onset estimation during sit-towalk: Recommended methods suitable for healthy individuals and ambulatory community-dwelling stroke survivors. PLoS ONE. 14 (5). https://doi.org/10.1371/journal.pone.0217563
Gait-Initiation Onset Estimation During Sit-to-Walk Comparing Healthy Individuals and Ambulatory Community-Dwelling Stroke Survivors
Jones, GD, James, DC, Thacker, M, Perry, R and Green, DA (2019). Gait-Initiation Onset Estimation During Sit-to-Walk Comparing Healthy Individuals and Ambulatory Community-Dwelling Stroke Survivors. https://doi.org/10.18744/LSBU.002933
Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes
Zaidell, L., Mileva, K., James, D.C., Bowtell, J., Pollock, R.D., Newham, D.J. and Sumners, D.P. (2019). Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes. Dose-Response. 17 (1). https://doi.org/10.1177/1559325818819946
Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: A feasibility study
James, D.C., Solan, M.C., Mileva, K.N. and James, D. (2018). Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: A feasibility study. Journal of Foot and Ankle Research. 11. https://doi.org/10.1186/s13047-018-0258-1
Parameters that remain consistent independent of pausing before gait-initiation during normal rise-to-walk behaviour delineated by sit-to-walk and sit-to-stand-and-walk.
Jones, GD, James, DC, Thacker, M and Green, DA (2018). Parameters that remain consistent independent of pausing before gait-initiation during normal rise-to-walk behaviour delineated by sit-to-walk and sit-to-stand-and-walk. PLoS ONE. 13 (10). https://doi.org/10.1371/journal.pone.0205346
Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties.
McCrum, C, Oberländer, KD, Epro, G, Krauss, P, James, DC, Reeves, N and Karamanidis, K (2017). Loading rate and contraction duration effects on in vivo human Achilles tendon mechanical properties. Clinical Physiology and Functional Imaging. 38 (3), pp. 517-523. https://doi.org/10.1111/cpf.12472
Sit-to-walk and sit-to-stand-and-walk task dynamics are maintained during rising at an elevated seat-height independent of lead-limb in healthy individuals
Jones, GD, James, DC, Thacker, M, Jones, EJ and Green, DA (2016). Sit-to-walk and sit-to-stand-and-walk task dynamics are maintained during rising at an elevated seat-height independent of lead-limb in healthy individuals. Gait and Posture. 48 (July), pp. 226 - 229. https://doi.org/10.1016/j.gaitpost.2016.06.005
Sit-to-stand-and-walk from 120% knee height: A novel approach to assess dynamic postural control independent of lead-limb
Jones, GD, James, DC, Thacker, M and Green, DA (2016). Sit-to-stand-and-walk from 120% knee height: A novel approach to assess dynamic postural control independent of lead-limb. Journal of Visualized Experiments. 2016 (114). https://doi.org/10.3791/54323
The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.
James, DC, Farmer, LJ, Sayers, JB, Cook, DP and Mileva, K. (2015). The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study. Clinical Biomechanics. 30 (4), pp. 347-354. https://doi.org/10.1016/j.clinbiomech.2015.02.016
47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle
James, DC, Mileva, K. and Solan, MC (2015). 47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle. British Journal of Sports Medicine. 49 (Suppl). https://doi.org/10.1136/bjsports-2015-095573.47
Low-frequency accelerations over-estimate impact-related shock during walking.
James, DC, Mileva, K. and Cook, DP (2014). Low-frequency accelerations over-estimate impact-related shock during walking. Journal of Electromyography and Kinesiology. 24 (2), pp. 264-270. https://doi.org/10.1016/j.jelekin.2013.12.008
Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking.
James, D.C., Chesters, T., Sumners, D.P., Cook, D.P., Green, D.A. and Mileva, K. (2012). Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking. International Journal of Sports Medicine. 34 (5), pp. 438-443. https://doi.org/10.1055/s-0032-1321893
Coefficient of cross correlation analysis of kinematics during walking barefoot and in Vibram FiveFingers®
James, DC and Cook, D (2011). Coefficient of cross correlation analysis of kinematics during walking barefoot and in Vibram FiveFingers®. Footwear Science. 3 (SUP 1), pp. S79-S81. https://doi.org/10.1080/19424280.2011.575401