Gastrocnemius Medialis Contractile Behavior Is Preserved During 30% Body Weight Supported Gait Training

Journal article


Richter, C., Braunstein, B., Staeudle, B., Attias, J., Suess, A., Weber, T., Mileva, K.N., Rittweger, J., Green, D.A. and Albracht, K. (2021). Gastrocnemius Medialis Contractile Behavior Is Preserved During 30% Body Weight Supported Gait Training. Frontiers in Sports and Active Living. 2. https://doi.org/10.3389/fspor.2020.614559
AuthorsRichter, C., Braunstein, B., Staeudle, B., Attias, J., Suess, A., Weber, T., Mileva, K.N., Rittweger, J., Green, D.A. and Albracht, K.
Abstract

<jats:p>Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75% of the speed at which they typically transition to running, with 0% and 30% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle–tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle–tendon unit model. Depending on whether data were normally distributed, a paired <jats:italic>t</jats:italic>-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle–series elastic element behavior. Walking with 30% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle–tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle–series elastic element behavior was observed during walking with 30% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking.</jats:p>

Year2021
JournalFrontiers in Sports and Active Living
Journal citation2
PublisherFrontiers Media SA
ISSN2624-9367
Digital Object Identifier (DOI)https://doi.org/10.3389/fspor.2020.614559
Publication dates
Online18 Jan 2021
Publication process dates
Accepted23 Nov 2020
Deposited02 Feb 2021
Publisher's version
License
File Access Level
Open
Accepted author manuscript
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/8vwv2

Download files


Publisher's version
fspor-02-614559.pdf
License: CC BY 4.0
File access level: Open

  • 11
    total views
  • 2
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity
Richter, C., Braunstein, B., Staeudle, B., Attias, J., Suess, A., Weber, T., Mileva, K., Rittweger, J., Green, D.A. and Albracht, K. (2021). Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity. npj Microgravity. 7 (32), pp. 1-8. https://doi.org/10.1038/s41526-021-00155-7
This Girl Can, can't she? Perspectives from exercise providers and participants on what factors influence participation  
Hull, R., Zaidell, L., Mileva, K. and De Oliveira, R. (2021). This Girl Can, can't she? Perspectives from exercise providers and participants on what factors influence participation  . Psychology of Sport and Exercise.
Less Is More-Cyclists-Triathlete's 30 min Cycling Time-Trial Performance Is Impaired With Multiple Feedback Compared to a Single Feedback.
Bayne, F., Racinais, S., Mileva, K., Hunter, S. and Gaoua, N. (2020). Less Is More-Cyclists-Triathlete's 30 min Cycling Time-Trial Performance Is Impaired With Multiple Feedback Compared to a Single Feedback. Frontiers in Psychology. 11, p. 608426. https://doi.org/10.3389/fpsyg.2020.608426
Supraspinal Responses and Spinal Reflexes
Mileva, K and Ritzmann, R (2020). Supraspinal Responses and Spinal Reflexes. in: Rittweger, J (ed.) Manual of Vibration Exercise and Vibration Therapy Cham, Switzerland Springer Nature. pp. 121-133
Direct muscle electrical stimulation as a method for the in vivo assessment of force production in m. abductor hallucis
Olivera, A.L.P., Alzapiedi, D.F., Solan, M.C., Karamanidis, K., Mileva, K. and James, D.C. (2020). Direct muscle electrical stimulation as a method for the in vivo assessment of force production in m. abductor hallucis. Journal of Biomechanics. 100, p. 109606. https://doi.org/10.1016/j.jbiomech.2020.109606
Training Regimes and Recovery Monitoring Practices of Elite British Swimmers
Pollock, S., Gaoua, N., Johnston, M., Cooke, K., Girard, O. and Mileva, K. (2019). Training Regimes and Recovery Monitoring Practices of Elite British Swimmers. Journal of Sports Science and Medicine. 18, pp. 577-585.
Correction to: Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review
Campbell, M, Varley-Campbell, J, Fulford, J, Taylor, B, Mileva, KN and Bowtell, JL (2019). Correction to: Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review. Sports Medicine. 49 (6), pp. 981-986. https://doi.org/10.1007/s40279-019-01100-1
Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes
Mileva, K., Zaidell, L, James, DC, Bowtell, J, Pollock, RD, Newham, DJ and Sumners, DP (2019). Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes. Dose-Response. 17 (1). https://doi.org/10.1177/1559325818819946
Effect of Immobilisation on Neuromuscular Function In Vivoin Humans: A Systematic Review
Campbell, M, Varley-Campbell, J, Fulford, J, Taylor, B, Mileva, K. and Bowtell, J (2019). Effect of Immobilisation on Neuromuscular Function In Vivoin Humans: A Systematic Review. Sports Medicine. https://doi.org/10.1007/s40279-019-01088-8
Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants.
Bowtell, JL, Mohr, M, Fulford, J, Jackman, SR, Ermidis, G, Krustrup, P and Mileva, K. (2018). Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants. Frontiers in Nutrition. 5, p. 6. https://doi.org/10.3389/fnut.2018.00006
Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study
James, DC, Solan, MC and Mileva, K. (2018). Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study. Journal of Foot and Ankle Research. 11. https://doi.org/10.1186/s13047-018-0258-1
Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: relevance of UK dietary recommendations.
Aytekin, N, Mileva, K. and Cunliffe, AD (2018). Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: relevance of UK dietary recommendations. Nutrition Research Reviews. 31 (2), pp. 104-224. https://doi.org/10.1017/S0954422418000045
Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.
Black, MI, Jones, AM, Blackwell, JR, Bailey, SJ, Wylie, LJ, McDonagh, STJ, Thompson, C, Kelly, J, Sumners, P, Mileva, K., Bowtell, JL and Vanhatalo, A (2017). Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. Journal of Applied Physicology (1985). 122 (3), pp. 446-459. https://doi.org/10.1152/japplphysiol.00942.2016
The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.
James, DC, Farmer, LJ, Sayers, JB, Cook, DP and Mileva, K. (2015). The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study. Clinical Biomechanics. 30 (4), pp. 347-354. https://doi.org/10.1016/j.clinbiomech.2015.02.016
47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle
James, DC, Mileva, K. and Solan, MC (2015). 47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle. British Journal of Sports Medicine. 49 (Suppl). https://doi.org/10.1136/bjsports-2015-095573.47
Low-frequency accelerations over-estimate impact-related shock during walking.
James, DC, Mileva, K. and Cook, DP (2014). Low-frequency accelerations over-estimate impact-related shock during walking. Journal of Electromyography and Kinesiology. 24 (2), pp. 264-270. https://doi.org/10.1016/j.jelekin.2013.12.008
Effect of Hypohydration on Peripheral and Corticospinal Excitability and Voluntary Activation
Bowtell, JL, Avenell, G, Hunter, SP and Mileva, K. (2013). Effect of Hypohydration on Peripheral and Corticospinal Excitability and Voluntary Activation. PLoS ONE. 8 (10), p. e77004. https://doi.org/10.1371/journal.pone.0077004
Repeated sprint training in normobaric hypoxia
Cooke, K, Galvin, HM, Sumners, DP, Mileva, K. and Bowtell, JL (2013). Repeated sprint training in normobaric hypoxia. British Journal of Sports Medicine. 47, pp. i74-i79. https://doi.org/10.1136/bjsports-2013-092826
Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking.
James, DC, Chesters, T, Sumners, DP, Cook, DP, Green, DA and Mileva, K. (2012). Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking. International Journal of Sports Medicine. 34 (5), pp. 438-443. https://doi.org/10.1055/s-0032-1321893