Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: relevance of UK dietary recommendations.

Journal article


Aytekin, N, Mileva, KN and Cunliffe, AD (2018). Selected B vitamins and their possible link to the aetiology of age-related sarcopenia: relevance of UK dietary recommendations. Nutrition Research Reviews.
AuthorsAytekin, N, Mileva, KN and Cunliffe, AD
Abstract

The possible roles of selected B vitamins in the development and progression of sarcopenia are reviewed. Age-related declines in muscle mass and function are associated with huge and increasing costs to healthcare providers. Falls and loss of mobility and independence due to declining muscle mass/function are associated with poor clinical outcomes and their prevention and management are attractive research targets. Nutritional status appears a key modifiable and affordable intervention. There is emerging evidence of sarcopenia being the result not only of diminished anabolic activity but also of declining neurological integrity in older age, which is emerging as an important aspect of the development of age-related decline in muscle mass/function. In this connection, several B vitamins can be viewed as not only cofactors in muscle synthetic processes, but also as neurotrophic agents with involvements in both bioenergetic and trophic pathways. The B vitamins thus selected are examined with respect to their relevance to multiple aspects of neuromuscular function and evidence is considered that requirements, intakes or absorption may be altered in the elderly. In addition, the evidence base for recommended intakes (UK recommended daily allowance) is examined with particular reference to original datasets and their relevance to older individuals. It is possible that inconsistencies in the literature with respect to the nutritional management of sarcopenia may, in part at least, be the result of compromised micronutrient status in some study participants. It is suggested that in order, for example, for intervention with amino acids to be successful, underlying micronutrient deficiencies must first be addressed/eliminated.

KeywordsAgeing: B vitamin intake; Micronutrient status; Neurological integrity; Neuromuscular function; Recommended daily intake; Sarcopenia; 07 Agricultural And Veterinary Sciences; 11 Medical And Health Sciences; 06 Biological Sciences; Nutrition & Dietetics
Year2018
JournalNutrition Research Reviews
ISSN1475-2700
Digital Object Identifier (DOI)doi:10.1017/S0954422418000045
Publication dates
Print09 May 2018
Publication process dates
Deposited20 Aug 2018
Accepted09 May 2018
Accepted author manuscript
License
CC BY 4.0
Page range1-21
Permalink -

https://openresearch.lsbu.ac.uk/item/86qyw

  • 1
    total views
  • 5
    total downloads
  • 1
    views this month
  • 3
    downloads this month

Related outputs

Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review
Campbell, M, Varley-Campbell, J, Fulford, J, Taylor, B, Mileva, K and Bowtell, J (2019). Effect of Immobilisation on Neuromuscular Function In Vivo in Humans: A Systematic Review. Sports Medicine.
Effect of Hypohydration on Peripheral and Corticospinal Excitability and Voluntary Activation
Bowtell, JL, Avenell, G, Hunter, SP and Mileva, KN (2013). Effect of Hypohydration on Peripheral and Corticospinal Excitability and Voluntary Activation. PLoS ONE. 8 (10), p. e77004.
Repeated sprint training in normobaric hypoxia
Cooke, K, Galvin, HM, Sumners, DP, Mileva, KN and Bowtell, JL (2013). Repeated sprint training in normobaric hypoxia. British Journal of Sports Medicine. 47, pp. i74-i79.
Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes
Mileva, K, Zaidell, L, James, DC, Bowtell, J, Pollock, RD, Newham, DJ and Sumners, DP (2019). Lower body acceleration and muscular responses to rotational and vertical whole-body vibration of different frequencies and amplitudes. Dose-Response. 17 (1).
Foetal developmental origins of adult onset non-insulin dependent diabetes mellitus
Stephenson, S and Cunliffe, A (2018). Foetal developmental origins of adult onset non-insulin dependent diabetes mellitus. Journal of Nutrition and Food Sciences. 8 (5), pp. 1-11.
Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking.
James, DC, Chesters, T, Sumners, DP, Cook, DP, Green, DA and Mileva, KN (2012). Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking. International Journal of Sports Medicine. 34 (5), pp. 438-443.
Low-frequency accelerations over-estimate impact-related shock during walking.
James, DC, Mileva, KN and Cook, DP (2014). Low-frequency accelerations over-estimate impact-related shock during walking. Journal of Electromyography and Kinesiology. 24 (2), pp. 264-270.
The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.
James, DC, Farmer, LJ, Sayers, JB, Cook, DP and Mileva, KN (2015). The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study. Clinical Biomechanics. 30 (4), pp. 347-354.
47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle
James, DC, Mileva, KN and Solan, MC (2015). 47 An acute session of high-frequency, low-intensity, wide-pulse electrical stimulation evokes fatigue adaptations in an intrinsic foot muscle. British Journal of Sports Medicine. 49 (Suppl).
Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study
James, DC, Solan, MC and Mileva, KN (2018). Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study. Journal of Foot and Ankle Research. 11.
Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants.
Bowtell, JL, Mohr, M, Fulford, J, Jackman, SR, Ermidis, G, Krustrup, P and Mileva, KN (2018). Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants. Frontiers in Nutrition. 5, p. 6.
Melanin-concentrating hormone in peripheral circulation in the human
Naufahu, J, Brito, F, Doslikova, B, Valencia, T, Cunliffe, A and Murray, J (2017). Melanin-concentrating hormone in peripheral circulation in the human. The Journal of clinical endocrinology. 232 (3), pp. 513-523.
Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.
Black, MI, Jones, AM, Blackwell, JR, Bailey, SJ, Wylie, LJ, McDonagh, STJ, Thompson, C, Kelly, J, Sumners, P, Mileva, KN, Bowtell, JL and Vanhatalo, A (2017). Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. Journal of Applied Physicology (1985). 122 (3), pp. 446-459.
Effectiveness of commercial versus homemade sports drinks on fluid balance and exercise capacity during high-intensity intermittent exercise
Cunliffe, A, Begum, R, Leverrit, M and Konstantaki, M (2016). Effectiveness of commercial versus homemade sports drinks on fluid balance and exercise capacity during high-intensity intermittent exercise. American Journal of Sports Science and Medicine. 3 (2), pp. 39 - 46 (8).