Catalytic conversion and chemical recovery

Book chapter


Constantinou, A, Hafeez, S, Pallari, E and Manos, G (2018). Catalytic conversion and chemical recovery. in: Al-Salem, S (ed.) Plastics to Energy: Fuel, chemicals and sustainable implications Oxford Elsevier. pp. 147-172
AuthorsConstantinou, A, Hafeez, S, Pallari, E and Manos, G
EditorsAl-Salem, S
Abstract

Polymers are large molecules, whether natural or synthetic, brought together through polymerisation giving rise to a wide range of products and applications in the manufacturing, medical, engineering, fashion and aviation sector. The increase in world demand of polymers has led to accumulation of plastic waste in the environment, specifically in landfills which has serious consequences to human and animal health. The non-biodegradable nature of synthetic polymers has produced the need for more sustainable and efficient waste processing methods like pyrolysis. Pyrolysis is a chemical process which treats plastic waste with thermal energy to recover desirable products such as fuels for energy, and chemical feedstocks. This process has attracted a lot of attention due to the fact that it does not produce harmful gases and has lower carbon monoxide and dioxide emissions when compared to other plastic solid waste (PSW) methods. In this work, the catalytic and non-catalytic methods are discussed along with an in-depth review of the different techniques used in the pyrolysis process. The operation variables effect will also be discussed, as well as the different reactor types. A review of different processing and co-processing methods will also be highlighted.

Page range147-172
Year2018
Book titlePlastics to Energy: Fuel, chemicals and sustainable implications
PublisherElsevier
Place of publicationOxford
Edition1
ISBN9780128131404
Publication dates
Print09 Nov 2018
Publication process dates
Deposited31 Jul 2018
Accepted20 Jul 2018
Digital Object Identifier (DOI)doi:10.1016/B978-0-12-813140-4.00006-6
Accepted author manuscript
License
CC BY-NC-ND 4.0
Permalink -

https://openresearch.lsbu.ac.uk/item/868w7

Accepted author manuscript

  • 17
    total views
  • 0
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Related outputs

Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits
Constantinou, A, Hafeez, S and Al Salem, SM (2019). Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits. in: Zhang, Z (ed.) Membranes for Environmental Applications Springer.
Continuous Flow Aerobic Oxidation of Benzyl Alcohol on RuAl2O3 Catalyst in a Flat Membrane Microchannel Reactor an Experimental and Modelling Study
Constantinou, A, Gaowei, W, Ellis, P, Kuhn, S, Enhong, C and Gavriilidis, A (2019). Continuous Flow Aerobic Oxidation of Benzyl Alcohol on RuAl2O3 Catalyst in a Flat Membrane Microchannel Reactor an Experimental and Modelling Study. Chemical Engineering Science. 201, pp. 386-396.
A Review of The Valorisation and Management of Industrial Spent Catalyst Waste in The Context of Sustainable Practice: The Case of The State of Kuwait in Parallel to European Industry
Constantinou, A., Al-Salem, S., Leeke, G.A., Hafeez, S., Karam, H.J., Al-Qassimi, M., Al-Dhafeeri, A.T., Manos, G. and Arena, U. (2019). A Review of The Valorisation and Management of Industrial Spent Catalyst Waste in The Context of Sustainable Practice: The Case of The State of Kuwait in Parallel to European Industry. Waste Management and Research.
Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management
Constantinou, A, Antelava, A, Hafeez, S, Manos, G, Al-Salem, S, Sharma, B K and Kohli, K (2019). Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environmental Management. 64, pp. 230-244.
Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage
Dunne, L and Manos, G (2018). Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Nanomaterials. 8 (10), p. 818.
Development of a Flat Membrane Microchannel Packed- Bed Reactor for Scalable Aerobic Oxidation of Benzyl Alcohol in Flow
Wu, G, Cao, E, Ellis, P, Constantinou, A, Kuhn, S and Gavriilidis, A (2018). Development of a Flat Membrane Microchannel Packed- Bed Reactor for Scalable Aerobic Oxidation of Benzyl Alcohol in Flow. Chemical Engineering Journal.
Aerobic Oxidation of Benzyl Alcohol in a Continuous Catalytic Membrane Reactor
Constantinou, A, Gaowei, W, Baldassarre, V, Ellis, P, Kuhn, S and Gavriilidis, A (2018). Aerobic Oxidation of Benzyl Alcohol in a Continuous Catalytic Membrane Reactor. Topics in Catalysis.
Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’
Constantinou, A, Pallari, E, Antelava, A and Manos, G (2019). Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’. in: Al-Salem, S (ed.) Plastics Conversion to Energy, Chemicals, Fuel and Sustainable Implications - Elsevier. pp. 221-231
Liquid fuel synthesis in microreactors
Hafeez, S, Manos, G, Al-Salem, S, Aristodemou, E and Constantinou, A (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry and Engineering.
CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH
Constantinou, A (2017). CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH. Green Processing and Synthesis.
How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood
Constantinou, A (2017). How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environmental Pollution. 233, pp. 782-796.
Statistical Mechanics of Binary Mixture Adsorption in Metal-Organic Frameworks in the Osmotic Ensemble.
Dunne, LJ and Manos, G (2018). Statistical Mechanics of Binary Mixture Adsorption in Metal-Organic Frameworks in the Osmotic Ensemble. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences.
A review on thermal and catalytic pyrolysis of plastic solid waste
Constantinou, A (2017). A review on thermal and catalytic pyrolysis of plastic solid waste. Journal of Environmental Management. 197, pp. 177-198.
Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries
Constantinou, A (2016). Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering.
Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks
Dunne, LJ and Manos, G (2015). Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks. Dalton Transactions. 45 (10), pp. 4213-4217.