Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage
Journal article
Dunne, L and Manos, G (2018). Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Nanomaterials. 8 (10), p. 818. https://doi.org/10.3390/nano8100818
Authors | Dunne, L and Manos, G |
---|---|
Abstract | Abstract:Currently metal-organic frameworks (MOFs) are receiving significant attention as part of an international push to use their special properties in an extensive variety of energy applications. In particular, MOFs have exceptional potential for gas storage especially for methane and hydrogen for automobiles. However, using theoretical approaches to investigate this important problem presents various difficulties. Here we present the outcomes of a basic theoretical investigation of methane adsorption in large pore MOFs with the aim of capturing the unique features of this phenomenon. We have developed a pseudo one-dimensional statistical mechanical theory of adsorption of gas in a MOF with both narrow and large pores which is solved exactly using a transfer matrix technique in the Osmotic Ensemble (OE). The theory effectively describes the distinctive features of adsorption of gas isotherms in MOFs. The characteristic forms of adsorption isotherms in MOFs reflect changes in structure caused by adsorption of gas and compressive stress. Of extraordinary importance for gas storage for energy applications we find two regimes of Negative gas adsorption (NGA) where gas pressure causes the MOF to transform from the large pore to the narrow pore structure. These transformations can be induced by mechanical compression and conceivably used in an engine to discharge adsorbed gas from the MOF. The elements which govern NGA in MOFs with large pores are identified. Our study may help guide the difficult program of work of computer simulation studies of gas storage in MOFs with large pores. |
Keywords | metal–organic framework; negative gas adsorption (NGA)statistical mechanical model; osmotic ensemble (OE); methane energy storage |
Year | 2018 |
Journal | Nanomaterials |
Journal citation | 8 (10), p. 818 |
Publisher | MDPI |
ISSN | 2079-4991 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/nano8100818 |
Publication dates | |
11 Oct 2018 | |
Publication process dates | |
Deposited | 09 Oct 2018 |
Accepted | 08 Oct 2018 |
Accepted author manuscript | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/8691v
Download files
Accepted author manuscript
nanomaterials-359962_Revised_ForSubmission_withChangesAccepted.pdf | ||
License: CC BY 4.0 | ||
File access level: Open |
81
total views205
total downloads0
views this month0
downloads this month