Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage

Journal article


Dunne, L and Manos, G (2018). Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Nanomaterials. 8 (10), p. 818. https://doi.org/10.3390/nano8100818
AuthorsDunne, L and Manos, G
Abstract

Abstract:Currently metal-organic frameworks (MOFs) are receiving significant attention as part of an international push to use their special properties in an extensive variety of energy applications. In particular, MOFs have exceptional potential for gas storage especially for methane and hydrogen for automobiles. However, using theoretical approaches to investigate this important problem presents various difficulties. Here we present the outcomes of a basic theoretical investigation of methane adsorption in large pore MOFs with the aim of capturing the unique features of this phenomenon. We have developed a pseudo one-dimensional statistical mechanical theory of adsorption of gas in a MOF with both narrow and large pores which is solved exactly using a transfer matrix technique in the Osmotic Ensemble (OE). The theory effectively describes the distinctive features of adsorption of gas isotherms in MOFs. The characteristic forms of adsorption isotherms in MOFs reflect changes in structure caused by adsorption of gas and compressive stress. Of extraordinary importance for gas storage for energy applications we find two regimes of Negative gas adsorption (NGA) where gas pressure causes the MOF to transform from the large pore to the narrow pore structure. These transformations can be induced by mechanical compression and conceivably used in an engine to discharge adsorbed gas from the MOF. The elements which govern NGA in MOFs with large pores are identified. Our study may help guide the difficult program of work of computer simulation studies of gas storage in MOFs with large pores.

Keywordsmetal–organic framework; negative gas adsorption (NGA)statistical mechanical model; osmotic ensemble (OE); methane energy storage
Year2018
JournalNanomaterials
Journal citation8 (10), p. 818
PublisherMDPI
ISSN2079-4991
Digital Object Identifier (DOI)https://doi.org/10.3390/nano8100818
Publication dates
Print11 Oct 2018
Publication process dates
Deposited09 Oct 2018
Accepted08 Oct 2018
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8691v

Download files


Accepted author manuscript
  • 74
    total views
  • 197
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

CO2 capture using membrane contactors: a systematic literature review
Hafeez, S, Safdar, T, Pallari, E, Manos, G, Aristodemou, E, Zhang, Z, Al-Salem, SM and Constantinou, A (2020). CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering.
Fuel Production Using Membrane Reactors
Constantinou, A, Hafeez, S, Manos, G and Al-Salem, S (2020). Fuel Production Using Membrane Reactors. Environmental Chemistry Letters. 159. https://doi.org/10.1007/s10311-020-01024-7
Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort 1 to Combat Plastic Waste Accumulation
Constantinou, A, Antelava, A, Bumajdad, A, Manos, G, Dewil, R and Al-Salem, S (2020). Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort 1 to Combat Plastic Waste Accumulation. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-020-01776-x
Exact Matrix Treatment of the Statistical Mechanics ofAdsorption of Large Aromatic Molecules on Graphene.
Dunne, L and Manos, G (2020). Exact Matrix Treatment of the Statistical Mechanics ofAdsorption of Large Aromatic Molecules on Graphene. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D0CP00255K.
Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors
Constantinou, A, Hafeez, S, Aristodemou, E, Manos, G and Al-Salem, S (2020). Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors. Reaction Chemistry and Engineering. 5, pp. 1083-1092. https://doi.org/10.1039/D0RE00102C
Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management
Constantinou, A, Antelava, A, Hafeez, S, Manos, G, Al-Salem, S, Sharma, B K and Kohli, K (2019). Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environmental Management. 64, pp. 230-244. https://doi.org/10.1007/s00267-019-01178-3
Catalytic conversion and chemical recovery
Constantinou, A, Hafeez, S, Pallari, E and Manos, G (2018). Catalytic conversion and chemical recovery. in: Al-Salem, S (ed.) Plastics to Energy: Fuel, chemicals and sustainable implications Oxford Elsevier. pp. 147-172
Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’
Constantinou, A, Pallari, E, Antelava, A and Manos, G (2019). Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’. in: Al-Salem, S (ed.) Plastics Conversion to Energy, Chemicals, Fuel and Sustainable Implications - Elsevier. pp. 221-231
Liquid fuel synthesis in microreactors
Hafeez, S, Manos, G, Al-Salem, S, Aristodemou, E and Constantinou, A (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry and Engineering. (4). https://doi.org/10.1039/c8re00040a
Obituary: Sir Harry Kroto
Dunne, LJ (2017). Obituary: Sir Harry Kroto. in: Maruani, J, Brandas, EJ and Delgado-Barrio, G (ed.) Quantum Systems in Physics, Chemistry, and Biology: Advances in Concepts and Applications Springer. pp. xv-xviii
High Temperature Superconductivity in Strongly Correlated Electronic Systems
Dunne, LJ, Brändas, EJ and Cox, H (2016). High Temperature Superconductivity in Strongly Correlated Electronic Systems. Advances in Quantum Chemistry. https://doi.org/10.1016/bs.aiq.2016.06.003
Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks
Dunne, LJ and Manos, G (2015). Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks. Dalton Transactions. 45 (10), pp. 4213-4217. https://doi.org/10.1039/c5dt03248b