Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks

Journal article


Dunne, LJ and Manos, G (2015). Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks. Dalton Transactions. 45 (10), pp. 4213-4217.
AuthorsDunne, LJ and Manos, G
Abstract

Here we present an exactly treated quasi-one dimensional statistical mechanical osmotic ensemble model of pressure and adsorption induced breathing structural transformations of metal-organic frameworks (MOFs). The treatment uses a transfer matrix method. The model successfully reproduces the gas and pressure induced structural changes which are observed experimentally in MOFs. The model treatment presented here is a significant step towards analytical statistical mechanical treatments of flexible metal-organic frameworks.

Keywords0302 Inorganic Chemistry; 0399 Other Chemical Sciences; Inorganic & Nuclear Chemistry
Year2015
JournalDalton Transactions
Journal citation45 (10), pp. 4213-4217
PublisherLondon South Bank University
ISSN1477-9226
Digital Object Identifier (DOI)doi:10.1039/c5dt03248b
Publication dates
Print22 Oct 2015
Publication process dates
Deposited31 Jan 2017
Accepted22 Oct 2015
Accepted author manuscript
License
CC BY 4.0
File description
Journal Article
Permalink -

https://openresearch.lsbu.ac.uk/item/875wq

  • 0
    total views
  • 2
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Related outputs

Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management
Constantinou, A, Antelava, A, Hafeez, S, Manos, G, Al-Salem, S, Sharma, B K and Kohli, K (2019). Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environmental Management.
Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage
Dunne, L and Manos, G (2018). Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Nanomaterials. 8 (10), p. 818.
Catalytic conversion and chemical recovery
Constantinou, A, Hafeez, S, Pallari, E and Manos, G (2018). Catalytic conversion and chemical recovery. in: Al-Salem, S (ed.) Plastics to Energy: Fuel, chemicals and sustainable implications Oxford Elsevier. pp. 147-172
Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’
Constantinou, A, Pallari, E, Antelava, A and Manos, G (2019). Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’. in: Al-Salem, S (ed.) Plastics Conversion to Energy, Chemicals, Fuel and Sustainable Implications - Elsevier. pp. 221-231
Liquid fuel synthesis in microreactors
Hafeez, S, Manos, G, Al-Salem, S, Aristodemou, E and Constantinou, A (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry and Engineering.
Statistical Mechanics of Binary Mixture Adsorption in Metal-Organic Frameworks in the Osmotic Ensemble.
Dunne, LJ and Manos, G (2018). Statistical Mechanics of Binary Mixture Adsorption in Metal-Organic Frameworks in the Osmotic Ensemble. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences.
High Temperature Superconductivity in Strongly Correlated Electronic Systems
Dunne, LJ, Brändas, EJ and Cox, H (2016). High Temperature Superconductivity in Strongly Correlated Electronic Systems. Advances in Quantum Chemistry.
Obituary: Sir Harry Kroto
Dunne, LJ (2017). Obituary: Sir Harry Kroto. in: Maruani, J, Brandas, EJ and Delgado-Barrio, G (ed.) Quantum Systems in Physics, Chemistry, and Biology: Advances in Concepts and Applications Springer International Publishing AG. pp. xv-xviii