CFD Study of the Numbering up of Membrane Microreactors for CO 2 Capture

Journal article


Harkou, Eleana, Hafeez, S., Manos, G. and Constantinou, A. (2021). CFD Study of the Numbering up of Membrane Microreactors for CO 2 Capture. Processes. 9 (9), p. e1515. https://doi.org/10.3390/pr9091515
AuthorsHarkou, Eleana, Hafeez, S., Manos, G. and Constantinou, A.
AbstractCarbon dioxide (CO2) is one of the major atmospheric greenhouse gases (GHG). The continuous increase of CO2 concentration and its long atmospheric lifetime may cause long-term negative effects on the climate. It is important to develop technologies to capture and minimize those emissions into the atmosphere. The objective of this work is to design and study theoretically and experimentally a numbering-up/scale-out membrane microreactor in order to be used as a capture system. The main aim of the work is to obtain an even flow distribution at each plate of the reactor. Nearly uniform flow distribution was achieved at each layer of the numbering-up microreactor according to the carried-out CFD models. The maximum difference between the average velocities was less than 6% for both gas and liquid flows. To obtain better flow distribution into the microreactor, the radius of the inlet/outlet tube was optimized. Results from CFD and experimental simulations do not match, and slightly maldistribution in achieved in the experimental system due to phase breakthrough and imperfections on the fabrication of the plates. Moreover, comparing the single channel microreactor to the scale-out microreactor, the latter showed poorer performance on CO2 removal while expecting the reactors to have similar performance. By installing inserts with different channel widths, the experimental results were identical to the original case.
KeywordsCO2 capture; membrane; microreactor; numbering up; CFD
Year2021
JournalProcesses
Journal citation9 (9), p. e1515
PublisherMDPI
ISSN2227-9717
Digital Object Identifier (DOI)https://doi.org/10.3390/pr9091515
Publication dates
Online26 Aug 2021
Publication process dates
Accepted24 Aug 2021
Deposited10 Nov 2021
Publisher's version
License
File Access Level
Open
Licensehttps://creativecommons.org/licenses/by/4.0/
Permalink -

https://openresearch.lsbu.ac.uk/item/8yq7y

Download files


Publisher's version
processes-09-01515.pdf
License: CC BY 4.0
File access level: Open

  • 60
    total views
  • 37
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies
Hafeez, S., Sanchez, F., Al-Salem, S., Villa, A., Manos, G., Dimitratos, N. and Constantinou, A. (2021). Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies. Catalysts. 11 (3), p. e341. https://doi.org/10.3390/catal11030341
Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps
Fudge, T., Bulmer, I., Bowman, K., Pathmakanthan, S., Gambier, W., Dehouche, Z., Al-Salem, S. and Constantinou, A. (2021). Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps. Water. 13 (4), p. e445. https://doi.org/10.3390/w13040445
Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst
Hafeez, S., Barlocco, I., Al-Salem, S., Villa, A., Chen, X., Delgado, J.J., Manos, G., Dimitratos, N. and Constantinou, A. (2021). Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. Applied Sciences. 11 (18), p. e8462. https://doi.org/10.3390/app11188462
Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors
Hafeez, S., Mahmood, S., Aristodemou, E., Al-Salem, S., Manos, G. and Constantinou, A. (2021). Process Simulation Modelling of the Catalytic Hydrodeoxygenation of 4-Propylguaiacol in Microreactors. Fuels. 2 (3), pp. 272-285. https://doi.org/10.3390/fuels2030016
Theoretical Investigation of the Deactivation of Ni Supported Catalysts for the Catalytic Deoxygenation of Palm Oil for Green Diesel Production
Hafeez, S., Al-Salem, S., Papageridis, Kyriakos N, Charisiou, Nikolaos D, Goula, M., Manos, G. and Constantinou, A. (2021). Theoretical Investigation of the Deactivation of Ni Supported Catalysts for the Catalytic Deoxygenation of Palm Oil for Green Diesel Production. Catalysts. 11 (6), p. e747. https://doi.org/10.3390/catal11060747
Can plastic waste management be a novel solution in combating the novel Coronavirus (COVID-19)? A short research note
Al-Salem, S., El-Eskandarani, M.S. and Constantinou, A. (2020). Can plastic waste management be a novel solution in combating the novel Coronavirus (COVID-19)? A short research note. Waste Management & Research: The Journal for a Sustainable Circular Economy. 39 (7), pp. 910-913. https://doi.org/10.1177/0734242x20978444
Modelling of Packed Bed and Coated Wall Microreactors for 6 Methanol Steam Reforming for Hydrogen Production
Constantinou, A., Hafeez, S., Aristodemou, E. and S.M, A.-S. (2020). Modelling of Packed Bed and Coated Wall Microreactors for 6 Methanol Steam Reforming for Hydrogen Production. RSC Advances: an international journal to further the chemical sciences. 68. https://doi.org/10.1039/D0RA06834A
CO2 capture using membrane contactors: a systematic literature review
Hafeez, S, Safdar, T, Pallari, E, Manos, G, Aristodemou, E, Zhang, Z, Al-Salem, SM and Constantinou, A (2020). CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering.
Turbulent Flows and Pollution Dispersion around Tall Buildings Using Adaptive Large Eddy Simulation (LES)
Aristodemou, E., Mottet, L., Constantinou, A. and Pain, C. (2020). Turbulent Flows and Pollution Dispersion around Tall Buildings Using Adaptive Large Eddy Simulation (LES). Buildings. 70 (7). https://doi.org/10.3390/buildings10070127
Fuel Production Using Membrane Reactors
Constantinou, A, Hafeez, S, Manos, G and Al-Salem, S (2020). Fuel Production Using Membrane Reactors. Environmental Chemistry Letters. 159. https://doi.org/10.1007/s10311-020-01024-7
Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort 1 to Combat Plastic Waste Accumulation
Constantinou, A, Antelava, A, Bumajdad, A, Manos, G, Dewil, R and Al-Salem, S (2020). Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort 1 to Combat Plastic Waste Accumulation. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-020-01776-x
Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors
Constantinou, A, Hafeez, S, Aristodemou, E, Manos, G and Al-Salem, S (2020). Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors. Reaction Chemistry and Engineering. 5, pp. 1083-1092. https://doi.org/10.1039/D0RE00102C
Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits
Hafeez, S., Al-Salem, S.M. and Constantinou, A. (2020). Membrane Reactors for Renewable Fuel Production and Their Environmental Benefits. in: Zhang, Z (ed.) Membranes for Environmental Applications Springer.
A review of the valorization and management of industrial spent catalyst waste in the context of sustainable practice: The case of the State of Kuwait in parallel to European industry
Hafeez, S., Al-Salem, S., Constantinou, A., Leeke, G A., Safdar, T. and Manos, G. (2019). A review of the valorization and management of industrial spent catalyst waste in the context of sustainable practice: The case of the State of Kuwait in parallel to European industry. Waste Management & Research: The Journal for a Sustainable Circular Economy. 37 (11), pp. 1127-1141. https://doi.org/10.1177/0734242X19876689
A Review of The Valorisation and Management of Industrial Spent Catalyst Waste in The Context of Sustainable Practice: The Case of The State of Kuwait in Parallel to European Industry
Constantinou, A., Al-Salem, S., Leeke, G.A., Hafeez, S., Karam, H.J., Al-Qassimi, M., Al-Dhafeeri, A.T., Manos, G. and Arena, U. (2019). A Review of The Valorisation and Management of Industrial Spent Catalyst Waste in The Context of Sustainable Practice: The Case of The State of Kuwait in Parallel to European Industry. Waste Management and Research. 37 (11), pp. 1127-1141. https://doi.org/10.1177/0734242X1987668
Continuous Flow Aerobic Oxidation of Benzyl Alcohol on RuAl2O3 Catalyst in a Flat Membrane Microchannel Reactor an Experimental and Modelling Study
Constantinou, A, Gaowei, W, Ellis, P, Kuhn, S, Enhong, C and Gavriilidis, A (2019). Continuous Flow Aerobic Oxidation of Benzyl Alcohol on RuAl2O3 Catalyst in a Flat Membrane Microchannel Reactor an Experimental and Modelling Study. Chemical Engineering Science. 201, pp. 386-396. https://doi.org/10.1016/j.ces.2019.02.015
Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management
Constantinou, A, Antelava, A, Hafeez, S, Manos, G, Al-Salem, S, Sharma, B K and Kohli, K (2019). Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environmental Management. 64, pp. 230-244. https://doi.org/10.1007/s00267-019-01178-3
Catalytic conversion and chemical recovery
Constantinou, A, Hafeez, S, Pallari, E and Manos, G (2018). Catalytic conversion and chemical recovery. in: Al-Salem, S (ed.) Plastics to Energy: Fuel, chemicals and sustainable implications Oxford Elsevier. pp. 147-172
Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’
Constantinou, A, Pallari, E, Antelava, A and Manos, G (2019). Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’. in: Al-Salem, S (ed.) Plastics Conversion to Energy, Chemicals, Fuel and Sustainable Implications - Elsevier. pp. 221-231
Liquid fuel synthesis in microreactors
Hafeez, S, Manos, G, Al-Salem, S, Aristodemou, E and Constantinou, A (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry and Engineering. (4). https://doi.org/10.1039/c8re00040a
Development of a Flat Membrane Microchannel Packed- Bed Reactor for Scalable Aerobic Oxidation of Benzyl Alcohol in Flow
Wu, G, Cao, E, Ellis, P, Constantinou, A, Kuhn, S and Gavriilidis, A (2018). Development of a Flat Membrane Microchannel Packed- Bed Reactor for Scalable Aerobic Oxidation of Benzyl Alcohol in Flow. Chemical Engineering Journal. 377, p. 120086. https://doi.org/10.1016/j.cej.2018.10.023
Aerobic Oxidation of Benzyl Alcohol in a Continuous Catalytic Membrane Reactor
Constantinou, A, Gaowei, W, Baldassarre, V, Ellis, P, Kuhn, S and Gavriilidis, A (2018). Aerobic Oxidation of Benzyl Alcohol in a Continuous Catalytic Membrane Reactor. Topics in Catalysis. 62, pp. 1126-1131. https://doi.org/10.1007/s11244-018-1060-9
A review on thermal and catalytic pyrolysis of plastic solid waste
Al-Salem, S.M., Antelava, A., Constantinou, A, Manos, G. and Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste. Journal of Environmental Management. 197, pp. 177-198. https://doi.org/10.1016/j.jenvman.2017.03.084
How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood
Aristodemou, E., Boganegra, L.M., Mottet, L., Pavlidis, D., Constantinou, A, Pain, C., Robins, A. and ApSimon, H. (2017). How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environmental Pollution. 233, pp. 782-796. https://doi.org/10.1016/j.envpol.2017.10.041
CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH
Constantinou, A (2017). CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH. Green Processing and Synthesis. 7 (6). https://doi.org/10.1515/gps-2017-0024
Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries
Gavriilidis, A., Constantinou, A, Hellgardt, K., Hii, K.K.(M), Hutchings, G.J., Brett, G.L., Kuhn, S. and Marsden, S.P. (2016). Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering. 1, pp. 595-612. https://doi.org/10.1039/c6re00155f