Exact Matrix Treatment of the Statistical Mechanics ofAdsorption of Large Aromatic Molecules on Graphene.

Journal article


Dunne, L and Manos, G (2020). Exact Matrix Treatment of the Statistical Mechanics ofAdsorption of Large Aromatic Molecules on Graphene. Physical Chemistry Chemical Physics. https://doi.org/10.1039/D0CP00255K.
AuthorsDunne, L and Manos, G
Abstract

Experimental studies of adsorption from solution of the large aromatic molecules 1,2-dihydroxybenzene (catechol) and phenyl hydroquinone on graphene nanoplatelets show that at low coverage adsorption is followed by a transition which occurs from adsorbed molecules in flat to more vertically oriented states. Catechol adsorption isotherms exhibit 2 plateaus while phenyl hydroquinone shows 3 plateaus indicating 2 and 3 active conformers respectively participating in the adsorption process. Modelling such adsorption isotherms presents a challenge. Here, an exact matrix treatment of the statistical mechanics of a one-dimensional model of adsorption of catechol and dihydroquinone on graphene nanoplatelets is presented. The theoretical adsorption isotherms successfully reproduce all the features of both the catechol and dihydroquinone experimental adsorption isotherms. As suggested by the experimentalists, our theoretical model demonstrates that adsorbed phenyl hydroquinone molecules adopt a flat orientation at low concentrations and an edge orientation at higher coverage before eventually adopting a vertical configuration. Both catechol and phenyl hydroquinone can be described by our interconvertible monomer-dimer-trimer model. The theoretical adsorption isotherms obtained show several plateaus reflecting the types of conformer on the graphene surface.

Year2020
JournalPhysical Chemistry Chemical Physics
PublisherRoyal Society of Chemistry (RSC)
ISSN1463-9076
Digital Object Identifier (DOI)https://doi.org/10.1039/D0CP00255K.
Publication dates
Online17 May 2020
Publication process dates
Accepted15 May 2020
Deposited23 May 2020
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/89wy1

Download files


Accepted author manuscript
GraphAds_Revised20May2020.pdf
License: CC BY 4.0
File access level: Open

  • 61
    total views
  • 150
    total downloads
  • 0
    views this month
  • 3
    downloads this month

Export as

Related outputs

CO2 capture using membrane contactors: a systematic literature review
Hafeez, S, Safdar, T, Pallari, E, Manos, G, Aristodemou, E, Zhang, Z, Al-Salem, SM and Constantinou, A (2020). CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering.
Fuel Production Using Membrane Reactors
Constantinou, A, Hafeez, S, Manos, G and Al-Salem, S (2020). Fuel Production Using Membrane Reactors. Environmental Chemistry Letters. 159. https://doi.org/10.1007/s10311-020-01024-7
Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort 1 to Combat Plastic Waste Accumulation
Constantinou, A, Antelava, A, Bumajdad, A, Manos, G, Dewil, R and Al-Salem, S (2020). Identification of Commercial Oxo-Biodegradable Plastics: Study of UV Induced Degradation in an Effort 1 to Combat Plastic Waste Accumulation. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-020-01776-x
Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors
Constantinou, A, Hafeez, S, Aristodemou, E, Manos, G and Al-Salem, S (2020). Computational Fluid Dynamic (CFD) and Reaction Modelling Study 6 of Bio-oil Catalytic Hydrodeoxygenation in Microreactors. Reaction Chemistry and Engineering. 5, pp. 1083-1092. https://doi.org/10.1039/D0RE00102C
Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management
Constantinou, A, Antelava, A, Hafeez, S, Manos, G, Al-Salem, S, Sharma, B K and Kohli, K (2019). Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environmental Management. 64, pp. 230-244. https://doi.org/10.1007/s00267-019-01178-3
Catalytic conversion and chemical recovery
Constantinou, A, Hafeez, S, Pallari, E and Manos, G (2018). Catalytic conversion and chemical recovery. in: Al-Salem, S (ed.) Plastics to Energy: Fuel, chemicals and sustainable implications Oxford Elsevier. pp. 147-172
Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’
Constantinou, A, Pallari, E, Antelava, A and Manos, G (2019). Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery’. in: Al-Salem, S (ed.) Plastics Conversion to Energy, Chemicals, Fuel and Sustainable Implications - Elsevier. pp. 221-231
Liquid fuel synthesis in microreactors
Hafeez, S, Manos, G, Al-Salem, S, Aristodemou, E and Constantinou, A (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry and Engineering. (4). https://doi.org/10.1039/c8re00040a
Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage
Dunne, L and Manos, G (2018). Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Nanomaterials. 8 (10), p. 818. https://doi.org/10.3390/nano8100818
Statistical mechanics of binary mixture adsorption in metal–organic frameworks in the osmotic ensemble
Dunne, L. and Manos, G. (2018). Statistical mechanics of binary mixture adsorption in metal–organic frameworks in the osmotic ensemble. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2115), p. 20170151. https://doi.org/10.1098/rsta.2017.0151
Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks
Dunne, LJ and Manos, G (2015). Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks. Dalton Transactions. 45 (10), pp. 4213-4217. https://doi.org/10.1039/c5dt03248b