Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production
Journal article
Middelkoop, V, Slater, T, Florea, M, Neațu, F, Danaci, S, Onyenkeadi, V, Boonen, K, Saha, B., Baragau, I. and Kellici, S (2019). Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production. Journal of Cleaner Production. 214, pp. 606-614. https://doi.org/10.1016/j.jclepro.2018.12.274
Authors | Middelkoop, V, Slater, T, Florea, M, Neațu, F, Danaci, S, Onyenkeadi, V, Boonen, K, Saha, B., Baragau, I. and Kellici, S |
---|---|
Abstract | A rapidly-growing 3D printing technology is innovatively employed for the manufacture of a new class of heterogenous catalysts for the conversion of CO2 into industrially relevant chemicals such as cyclic carbonates. For the first time, directly printed graphene-based 3D structured nanocatalysts have been developed combining the exceptional properties of graphene and active CeZrLa mixed-oxide nanoparticles. It constitutes a significant advance on previous attempts at 3D printing graphene inks in that it does not merely explore the printability itself, but enhances the efficiency of industrially relevant reactions, such as CO2 utilisation for direct propylene carbonate (PC) production in the absence of organic solvents. In comparison to the starting powder, 3D printed GO-supported CeZeLa catalysts showed improved activity with higher conversion and no noticeable change in selectivity. This can be attributed to the spatially uniform distribution of nanoparticles over the 2D and 3D surfaces, and the larger surface area and pore volume of the printed structures. 3D printed GO-supported CeZeLa catalysts compared to unsupported 3D printed samples exhibited higher selectivity and yield owing to the great number of new weak acid sites appearing in the supported sample, as observed by NH3-TPD analysis. In addition, the catalyst's facile separation from the product has the capacity to massively reduce materials and operating costs resulting in increased sustainability. It convincingly shows the potential of these printing technologies in revolutionising the way catalysts and catalytic reactors are designed in the general quest for clean technologies and greener chemistry. |
Year | 2019 |
Journal | Journal of Cleaner Production |
Journal citation | 214, pp. 606-614 |
Publisher | Elsevier |
ISSN | 0959-6526 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.jclepro.2018.12.274 |
Publication dates | |
20 Mar 2019 | |
Online | 03 Jan 2019 |
Publication process dates | |
Deposited | 07 Jan 2019 |
Accepted | 25 Dec 2018 |
Accepted author manuscript | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/86732
Download files
Accepted author manuscript
3d printed catalyst paper as accepted .pdf | ||
License: CC BY-NC-ND 4.0 | ||
File access level: Open |
214
total views386
total downloads0
views this month1
downloads this month