Enhancing physicochemical properties of coconut oil for the application of engine lubrication

Journal article


Hettiarachchi, S., Kellici, S., Kershaw, M and Bowen, D.J. (2023). Enhancing physicochemical properties of coconut oil for the application of engine lubrication. Tribology International . 190, p. 109060. https://doi.org/10.1016/j.triboint.2023.109060
AuthorsHettiarachchi, S., Kellici, S., Kershaw, M and Bowen, D.J.
Abstract

Engine lubricants require specific physical and chemical properties to function effectively and extend the lifespan of engines. Coconut oil (CCO) is an abundant, renewable, and environmentally friendly bio-based stock that has the potential to be a viable alternative to conventional mineral oil-based lubricants. In this study, we investigated the potential of CCO as a lubricant and formulated different blends with additives to enhance its physicochemical characteristics. Polymethylmethacrylate (PMMA), styrenated phenol (SP) and potassium hydroxide (KOH) were used as additives in varying concentrations. We evaluated the formulations for low pour point (PP), high viscosity index (VI) and total base number (TBN) using differential scanning calorimetry (DSC), viscometry, and titration methods (following ASTM D2270 and ASTM D2896–21 respectively). The formulated CCO was also tested for thermal, oxidative, and shear stability using thermogravimetric analysis and rheometry. The optimal formulation exhibited a PP reduction from 21 °C to 6 °C, improved VI from 169 to 206, and a TBN adjustment from 0 to 4.14 mg KOH g-1. The formulated CCO also exhibited superior thermal, oxidative, and shear stability compared to unformulated CCO and reference oil (15W40). Our results suggest that blending CCO with additives can effectively enhance its suitability for engine lubrication, opening up new possibilities for environmentally sustainable and renewable lubricants.

Keywordstribology
Year2023
JournalTribology International
Journal citation190, p. 109060
PublisherElsevier
ISSN1879-2464
Digital Object Identifier (DOI)https://doi.org/10.1016/j.triboint.2023.109060
Web address (URL)https://www.sciencedirect.com/science/article/pii/S0301679X23008484
Publication dates
Print31 Oct 2023
Publication process dates
Accepted28 Oct 2023
Deposited16 Nov 2023
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/958q3

Download files


Publisher's version
1-s2.0-S0301679X23008484-main.pdf
License: CC BY 4.0
File access level: Open

  • 42
    total views
  • 12
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Engineering Nitrogen-Doped Carbon Quantum Dots: Tailoring Optical and Chemical Properties through Selection of Nitrogen Precursors
Nguyen, K., Huš, M., Baragau, I., Bowen, D.J., Heil, T., Nicolaev, a., Abramiuc, L., Sapelkin, A., Sajjad, M. T. and Kellici, S. Engineering Nitrogen-Doped Carbon Quantum Dots: Tailoring Optical and Chemical Properties through Selection of Nitrogen Precursors. Small (Weinheim an der Bergstrasse, Germany). https://doi.org/10.1002/smll.202310587
Maximizing Polypropylene Recovery from Waste Carpet Feedstock: A Solvent-Driven Pathway Towards Circular Economy
Salazar Salazar, H., Baragau, I., Lu, Z., Roman Ramirez, L. and Kellici, S. (2024). Maximizing Polypropylene Recovery from Waste Carpet Feedstock: A Solvent-Driven Pathway Towards Circular Economy. RSC Sustainability . https://doi.org/10.1039/D3SU00270E
Nanostructured Al2O3/Graphene Additive in Bio-Based Lubricant: A Novel Approach to Improve Engine Performance
Hettiarachchi, S., Bowen, D.J., Kershaw, M, Baragau, I., Nicolaev, A and Kellici, S. (2023). Nanostructured Al2O3/Graphene Additive in Bio-Based Lubricant: A Novel Approach to Improve Engine Performance. Tribology International . 186, p. 108619. https://doi.org/10.1016/j.triboint.2023.108619
Outstanding visible light photocatalysis by nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide
Baragau, I., Buckeridge, J., Nguyen, K., Heil, T, Sajjad, T., Thomson, S., Rennie, A., Morgan, D., Power, N., Nicolae, S., Titirici, M., Dunn, S. and Kellici, S. (2023). Outstanding visible light photocatalysis by nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide. Journal of Materials Chemistry A. https://doi.org/10.1039/D2TA09586F
3D printed SrNbO2N photocatalyst for degradation of organic pollutants in water
Iborra-Torres, A., Husˇ, M., Nguyen, K., Vamvakeros, A., Sajjad, T., Dunn, S., Mertens, M., Jacques, S., Beale, A., Likozar, B., Hyett, G., Kellici, S. and Middelkoop, V. (2023). 3D printed SrNbO2N photocatalyst for degradation of organic pollutants in water. Materials Advances. https://doi.org/10.1039/D2MA01076C
Enhancing engine oil performance using nanoparticles and bio-lubricants as additives
Hettiarachchi, S. (2022). Enhancing engine oil performance using nanoparticles and bio-lubricants as additives. PhD Thesis London South Bank University School of Engineering https://doi.org/10.18744/lsbu.92806
Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening.
Nguyen, K.G., Baragau, I-A., Gromicova, R., Nicolaev, A., Thomson, S. A J, Rennie, A., Power, N. P, Sajjad, T. and Kellici, S. (2022). Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Scientific Reports. 12 (1), p. 13806. https://doi.org/10.1038/s41598-022-16893-x
In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes
Alli, U., McCarthy, K, Baragau, I., Power, N., Morgan, K, Dunn, S., Killian, S, Kennedy, T. and Kellici, S. (2021). In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2021.132976
3D printed catalytic reactors for aerobic selective oxidation of benzyl alcohol into benzaldehyde in continuous multiphase flow
Jacquot, C., Middelkoop, V., Köckritz, A., Pohar, A., Bienert, R., Kellici, S., Bărăgău, I.A., Venezia, B., Gavriilidis, A., Likozar, B. and Beale, A.M. (2021). 3D printed catalytic reactors for aerobic selective oxidation of benzyl alcohol into benzaldehyde in continuous multiphase flow. Sustainable Materials and Technologies. https://doi.org/10.1016/j.susmat.2021.e00329
An Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On-Off Metal Ions Nano-Sensing
Baragau, I., Power, N., Morgan, D, Lobo, R, Roberts, C, Titirici, M., Dunn, S. and Kellici, S. (2021). An Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On-Off Metal Ions Nano-Sensing. ACS Sustainable Chemistry & Engineering. 9 (6), pp. 2559-2569. https://doi.org/10.1021/acssuschemeng.0c08594
Continuous Hydrothermal Flow Synthesis of S-Functionalised Carbon Quantum Dots for Enhanced Oil Recovery
Baragau, I., Lu, Z., Power, P.N., Morgan, J.D, Bowen, J., Diaz, P. and Kellici, S. (2020). Continuous Hydrothermal Flow Synthesis of S-Functionalised Carbon Quantum Dots for Enhanced Oil Recovery. Chemical Engineering Journal. 405, p. 126631. https://doi.org/10.1016/j.cej.2020.126631
London Doctoral Academy Postgraduate Research Summer School 2020
Graham, A., Ibrahim, M., Lisson, M., Henfrey, C., Alfandari, N., Ojo, G., Baragau, I., Mansfield, M., Scheel, A., Bichard, E., Hamed Aboelkhair, H., Marjan, A., Hettiarachchi, S. J., Parvin, A., Merton, S., Ahmed-Landeryou, M., Jenkins, C., Alli, U., Atanda, O. and Ganiyu, S. (2020). London Doctoral Academy Postgraduate Research Summer School 2020. London South Bank University.
Continuous Hydrothermal Flow Synthesis of Blue-Luminescent Carbon Quantum Dots as Nanosensors for Chromium (VI) Detection
Baragau, I. and Kellici, S. (2020). Continuous Hydrothermal Flow Synthesis of Blue-Luminescent Carbon Quantum Dots as Nanosensors for Chromium (VI) Detection. London Doctoral Academy Postgraduate Research Summer School 2020. Online 06 - 09 Jul 2020 London South Bank University.
Enhancing engine oil performance using nanoparticles and bio-lubricants as additives
Hettiarachchi, S. J., Kellici, S. and Bowen, D.J. (2020). Enhancing engine oil performance using nanoparticles and bio-lubricants as additives. London Doctoral Academy Postgraduate Research Summer School 2020. Online 06 - 09 Jul 2020 London South Bank University.
CHFS of MXene Derivatives for Electrochemical Energy Storage
Alli, U. and Kellici, S. (2020). CHFS of MXene Derivatives for Electrochemical Energy Storage. London Doctoral Academy Postgraduate Research Summer School 2020. Online 06 - 09 Jul 2020 London South Bank University.
Continuous flow vortex fluidic-mediated exfoliation and fragmentation of two-dimensional MXene
Mohammed Al-antaki, A, Kellici, S., Power, P .N., Lawrance, W and Raston, C (2020). Continuous flow vortex fluidic-mediated exfoliation and fragmentation of two-dimensional MXene. Royal Society Open Science. 7 (5), p. 192255. https://doi.org/10.1098/rsos.192255
Chemical functionalisation of 2D materials via batch and continuous hydrothermal flow synthesis
Alli, U., Hettiarachchi, S. and Kellici, S. (2020). Chemical functionalisation of 2D materials via batch and continuous hydrothermal flow synthesis. Chemistry–A European Journal. https://doi.org/10.1002/chem.202000383
Vortex fluidic mediated synthesis of TiO2 nanoparticle/MXene composites
Al-antaki, A., Alharbi, T, Kellici, S., Power, N., Lawrance, W. and Raston, C. (2020). Vortex fluidic mediated synthesis of TiO2 nanoparticle/MXene composites. ChemNanoMat. https://doi.org/10.1002/cnma.201900779
Continuous Hydrothermal Flow Synthesis of Blue-Luminescent, Excitation-Independent Nitrogen-Doped Carbon Quantum Dots as Nanosensors
Baragau, I., Power, N., Morgan, D., Heil, T., Lobo, R., Roberts, C., Titirici, M.M., Dunn, S. and Kellici, S. (2020). Continuous Hydrothermal Flow Synthesis of Blue-Luminescent, Excitation-Independent Nitrogen-Doped Carbon Quantum Dots as Nanosensors. Journal of Materials Chemistry A. (8), pp. 3270-3279. https://doi.org/10.1039/C9TA11781D
Hydrothermal flow for 2D materials
Kellici, S. (2019). Hydrothermal flow for 2D materials. Materials World. September (2019), p. 42.
Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production
Middelkoop, V, Slater, T, Florea, M, Neațu, F, Danaci, S, Onyenkeadi, V, Boonen, K, Saha, B., Baragau, I. and Kellici, S (2019). Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production. Journal of Cleaner Production. 214, pp. 606-614. https://doi.org/10.1016/j.jclepro.2018.12.274
Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst
Saada, R, Aboelazayem, O, Kellici, S, Heil, T, Morgan, D, Lampronti, G and Saha, B (2018). Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst. Applied Catalysis B: Environmental. 226, pp. 451-462. https://doi.org/10.1016/j.apcatb.2017.12.081
Greener synthesis of butylene carbonate via CO2 utilisation using graphene-inorganic nanocomposite catalysts
Onyenkeadi, V, Aboelazayem, O, Kellici, S and Saha, B (2018). Greener synthesis of butylene carbonate via CO2 utilisation using graphene-inorganic nanocomposite catalysts. GPE 2018 – 6th International Congress on Green Process Engineering. Toulouse, France 03 - 06 Jun 2018
Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst
Onyenkeadi, V, Kellici, S and Saha, B (2018). Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst. Energy. 165, pp. 867-876. https://doi.org/10.1016/j.energy.2018.09.135
Continuous Hydrothermal Flow Synthesis of Graphene Quantum Dots
Kellici, S, Acord, J, Power, N, Morgan, D, Heil, T, Coppo, P, Middelkoop, V, Baragau, I., Moore, K and Raston, C (2018). Continuous Hydrothermal Flow Synthesis of Graphene Quantum Dots. Reaction Chemistry and Engineering. 6. https://doi.org/10.1039/C8RE00158H
Green Process Engineering as the Key to Future Processes
Patel, D, Kellici, S and Saha, B (2014). Green Process Engineering as the Key to Future Processes. Processes. 2 (1), pp. 311-332.
Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach
Kellici, S, Acord, J, Power, N, Morgan, D, Coppo, P, Heil, T and Saha, B (2017). Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. RSC Advances. 24, pp. 14716-14720. https://doi.org/10.1039/c7ra00127d
Selective Calixarene Directed Synthesis of MXene Plates, Crumpled Sheets, Spheres and Scrolls.
Vaughn, A, Ball, J, Heil, T, Morgan, D, Lampronti, G, Maršalkaitė, G, Raston, CL, Power, N and Kellici, S (2017). Selective Calixarene Directed Synthesis of MXene Plates, Crumpled Sheets, Spheres and Scrolls. Chemistry. 23 (34), pp. 8128-8133. https://doi.org/10.1002/chem.201701702
Greener synthesis of 1, 2 butylene carbonate from CO2 using graphene-inorganic nanocomposite catalysis
Onyenkeadi, V, Kellici, S and Saha, B (2017). Greener synthesis of 1, 2 butylene carbonate from CO2 using graphene-inorganic nanocomposite catalysis. SEEP 2017 –10th International Conference on Sustainable Energy & Environmental Protection. Bled, Slovenia 27 - 30 Jun 2017
Greener synthesis of styrene carbonate from CO2 using graphene-inorganic nanocomposite catalysts
Onyenkeadi, V, Kellici, S and Saha, B (2017). Greener synthesis of styrene carbonate from CO2 using graphene-inorganic nanocomposite catalysts. 10th World Congress of Chemical Engineering (WCCE10). Barcelona, Spain 01 - 05 Oct 2017
New Pathways in the Synthesis of 2-Dimensional Materials
Kellici, S (2017). New Pathways in the Synthesis of 2-Dimensional Materials. 1st Euro-Mediterranean Conference for Environmental Integration. Sousse, Tunisia 22 - 25 Nov 2017 Springer. https://doi.org/10.1007/978-3-319-70548-4_1
Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity
Kellici, S, Acord, J, Vaughn, A, Power, N, Morgan, D, Heil, T, Facq, S and Lampronti, G (2016). Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity. ACS applied materials & interfaces. 8 (29), pp. 19038-19046. https://doi.org/10.1021/acsami.6b06052
Imaging the continuous hydrothermal flow synthesis of nanoparticulate CeO2 at different supercritical water temperatures using in situ angle-dispersive diffraction
Middelkoop, V, Tighe, CJ, Kellici, S, Gruar, RI, Perkins, JM, Jacques, SDM, Barnes, P and Darr, JA (2014). Imaging the continuous hydrothermal flow synthesis of nanoparticulate CeO2 at different supercritical water temperatures using in situ angle-dispersive diffraction. Journal of Supercritical Fluids. 87, pp. 118 - 128. https://doi.org/10.1016/j.supflu.2013.12.022
Optical and photocatalytic behaviours of nanoparticles in the Ti-Zn-O binary system
Goodall, JBM, Kellici, S, Illsley, D, Lines, R, Knowles, JC and Darr, JA (2014). Optical and photocatalytic behaviours of nanoparticles in the Ti-Zn-O binary system. RSC Advances. 4 (60), pp. 31799 - 31809. https://doi.org/10.1039/c3ra48030e