One-step production of biodiesel from high acid value waste cooking oil using supercritical methanol

Conference item


Aboelazayem, O, Gadalla, M and Saha, B (2017). One-step production of biodiesel from high acid value waste cooking oil using supercritical methanol. 10th World Congress of Chemical Engineering (WCCE10). Barcelona, Spain 01 - 05 Oct 2017 London South Bank University.
AuthorsAboelazayem, O, Gadalla, M and Saha, B
Abstract

Most of the energy used by the developed world is derived from fossil fuels, despite their environmental and economical challenges. Burning fossil fuels has been considered as the main source of global warming and the greenhouse gases. Moreover, the instability in prices and the limited reserves of the petroleum resources made fossil fuels unreliable source of energy. Consequently, the search for an alternative renewable and sustainable fuel has been considered an essential need [4]. Biodiesel has been recently a sustainable competitive fuel to the petroleum diesel fuel. It is non-toxic and biodegradable fuel which provides free sulphur and aromatics combustion. Although first generation biodiesel has shown significant impact and reliability, there are some concerns about extending the usage of first generation feedstock which might lead to food crisis. Thus, resulted food insecurity has made this first-generation biodiesel less attractive and an unsustainable source. Alternatively, second-generation biodiesel is socially and environmentally sustainable since it does not compromise food industry [1]. Waste cooking oil (WCO) has been recognised as a significant feedstock for second generation biodiesel production. However, free fatty acid (FFA) content in the WCOs is frequently high; hence they require pre-treatment before processing [2]. Biodiesel reaction under supercritical methanol conditions has proven a successful direct conversion for WCO of relatively high FFA content. Moreover, it reduces the cost of catalyst preparation and separation since it is a non-catalytic reaction [3]. In this study, biodiesel production from typical Egyptian waste cooking oil with high acid value (18 mg KOH/g) has been studied. Supercritical conditions of methanol have been used to run the reaction in the absence of catalyst. Chromatographic analysis of the WCO showed that it mainly consists of palmitic, oleic and linoleic fatty acids. Overall conversion of these fatty acids and their triglycerides has been investigated. Moreover, free fatty acids (FFA) conversion of the oil was analysed using ASTM D974. Response surface methodology (RSM) via Central Composite Design (CCD) was employed to study the significance and interactive effect of methanol to oil (M:O) molar ratio, reaction temperature, pressure and reaction time on reaction responses. Four quadratic model equations for each fatty acid’s overall conversion and the oil FFA conversion have been obtained describing the interrelationships between dependent and independent variables. In addition, the validity of the predicted models has been confirmed using the Analysis of Variance (ANOVA) method. Using numerical optimisation technique, optimum conditions for maximum overall conversion of palmitic, oleic, linoleic fatty acids and the oil FFA conversion has been concluded to 99.2%, 99.39%, 99.16% and 97% respectively at a methanol to oil molar ratio of 27.25:1, reaction temperature of 257 oC, pressure of 110 bar and reaction time of, 17 minutes.

KeywordsBiodiesel production; Waste cooking oil; Supercritical methanol; Bioenergy; Modelling
Year2017
PublisherLondon South Bank University
Accepted author manuscript
License
CC BY 4.0
Publication dates
Print01 Oct 2017
Publication process dates
Deposited29 Nov 2017
Accepted30 May 2017
Permalink -

https://openresearch.lsbu.ac.uk/item/86x75

  • 6
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Related outputs

Development of an environmentally benign and optimised biodiesel production process
Aboelazayem, O (2019). Development of an environmentally benign and optimised biodiesel production process. PhD Thesis London South Bank University School of Engineering
Waste cooking oil valorisation into biodiesel using supercritical methanolysis: critical assessment on the effect of water content
Umar, Y, Aboelazayem, O, Echresh, Z, Gadalla, M and Saha, B (2019). Waste cooking oil valorisation into biodiesel using supercritical methanolysis: critical assessment on the effect of water content. EUBCE 2019 – 27th European Biomass Conference and Exhibition. Lisbon, Portugal 26 - 31 May 2019
Analytical pyrolysis study of different lignin biomass
Echresh, Z, Abdulkhani, A and Saha, B (2019). Analytical pyrolysis study of different lignin biomass. EUBCE 2019 – 27th European Biomass Conference and Exhibition. Lisbon, Portugal 26 - 31 May 2019
Bio fuel: Environmentally benign biodiesel production from renewable sources
Abidin, SZ and Saha, B (2017). Bio fuel: Environmentally benign biodiesel production from renewable sources. in: The Water-Food-Energy Nexus: Processes, Technologies, and Challenges CRC Press. pp. 333-364
Systematic multivariate optimisation of butylene carbonate synthesis via CO <inf>2</inf> utilisation using graphene-inorganic nanocomposite catalysts
Onyenkeadi, V, Aboelazayem, O and Saha, B (2019). Systematic multivariate optimisation of butylene carbonate synthesis via CO <inf>2</inf> utilisation using graphene-inorganic nanocomposite catalysts. Catalysis Today.
Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil
Aboelazayem, O, Gadalla, M and Saha, B (2019). Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil. Renewable Energy. 143, pp. 77-90.
A permeable particle container
Saha, B, Ambroziak, K, Sherrington, DC and Mbeleck, R (2016). A permeable particle container.
Catalysis in multifunctional reactors
Mahajani, S and Saha, B (2016). Catalysis in multifunctional reactors. Physical Sciences Reviews. 1 (2).
Supercritical methanolysis of waste cooking oil for biodiesel production: Experimental assessment for evaluating the effect of free fatty acids content
Aboelazayem, O, Gadalla, M and Saha, B (2018). Supercritical methanolysis of waste cooking oil for biodiesel production: Experimental assessment for evaluating the effect of free fatty acids content. EUBCE 2018 – 26th European Biomass Conference and Exhibition Proceedings. Copenhagen, Denmark 14 - 17 May 2018
Valorisation of high acid value waste cooking oil into biodiesel via supercritical methanolysis
Umar, Y., Aboelazayem, O., Gadalla, M. and Saha, B. (2019). Valorisation of high acid value waste cooking oil into biodiesel via supercritical methanolysis. ChemEngDayUK 2019. Edinburgh, Scotland 08 - 09 Apr 2019
Supercritical methanolysis of waste cooking oil for biodiesel synthesis: Experimental and simulation assessments
Aboelazayem, O., Zadah, Z., Gadalla, M. and Saha, B. (2019). Supercritical methanolysis of waste cooking oil for biodiesel synthesis: Experimental and simulation assessments. ECOS2019 – 32nd International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact on Energy Systems. Wroclaw, Poland 23 - 28 Jun 2019
A comparative structural characterisation of different lignin biomass
Echresh, Z., Abdulkhani, A., Gadalla, M. and Saha, B. (2019). A comparative structural characterisation of different lignin biomass. ECOS2019 – 32nd International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact on Energy Systems. Wroclaw, Poland 23 - 28 Jun 2019
Synthesis and characterization of a novel amphoteric terpolymer nanocomposite for enhanced oil recovery applications
Mahran, S., Attia, A., Zadeh, Z. and Saha, B. (2019). Synthesis and characterization of a novel amphoteric terpolymer nanocomposite for enhanced oil recovery applications. ECOS2019 – 32nd International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact on Energy Systems. Wroclaw, Poland 23 - 28 Jun 2019
Direct synthesis of chloromethyl ethylene carbonate via CO2 utilisation using a novel Zr/ZIF-8 catalyst
Olaniyan, B. and Saha, B. (2019). Direct synthesis of chloromethyl ethylene carbonate via CO2 utilisation using a novel Zr/ZIF-8 catalyst. The 17th International Conference on Carbon Dioxide Utilization (ICCDU 2019). Aachen, Ggermany 23 - 27 Jun 2019
Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst
Onyenkeadi, V, Kellici, S and Saha, B (2018). Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst. Energy. 165, pp. 867-876.
A facile and greener synthesis of butylene carbonate via CO2 utilisation using a novel copper–zirconia oxide/graphene catalyst
Onyenkeadi, V, Aboelazayem, O and Saha, B (2018). A facile and greener synthesis of butylene carbonate via CO2 utilisation using a novel copper–zirconia oxide/graphene catalyst. The 16th International Conference on Carbon Dioxide Utilization (ICCDU XVI). Rio De Janeiro, Brazil 27 - 30 Aug 2018
A review on polymer flooding in enhanced oil recovery under harsh conditions
Mahran, S, Attia, A and Saha, B (2018). A review on polymer flooding in enhanced oil recovery under harsh conditions. 11th International Sustainable Energy & Environmental Protection Conference. Paisley, Scotland 08 - 11 May 2018
Non-catalytic production of biodiesel using supercritical methanol: a brief review
Aboelazayem, O, Gadalla, M and Saha, B (2018). Non-catalytic production of biodiesel using supercritical methanol: a brief review. 11th International Sustainable Energy & Environmental Protection Conference. Paisley, Scotland 08 - 11 May 2018
Greener synthesis of butylene carbonate via CO2 utilisation using graphene-inorganic nanocomposite catalysts
Onyenkeadi, V, Aboelazayem, O, Kellici, S and Saha, B (2018). Greener synthesis of butylene carbonate via CO2 utilisation using graphene-inorganic nanocomposite catalysts. GPE 2018 – 6th International Congress on Green Process Engineering. Toulouse, France 03 - 06 Jun 2018
Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis
Aboelazayem, O, Gadalla, M and Saha, B (2018). Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis. Energy. 161, pp. 299-307.
Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock
Aboelazayem, O, Gadalla, M and Saha, B (2018). Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock. Energy. 162, pp. 408-420.
A continuous process for the liquid phase epoxidation of an olefinic compound
Saha, B, Ambroziak, K, Sherrington, DC and Mbeleck, R (2018). A continuous process for the liquid phase epoxidation of an olefinic compound.
Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst
Saada, R, Aboelazayem, O, Kellici, S, Heil, T, Morgan, D, Lampronti, G and Saha, B (2018). Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst. Applied Catalysis B: Environmental. 226, pp. 451-462.
Systematic multivariate optimization of biodiesel synthesis from high acid value waste cooking oil: A response surface methodology approach
Aboelazayem, O., Gadalla, M. and Saha, B. (2018). Systematic multivariate optimization of biodiesel synthesis from high acid value waste cooking oil: A response surface methodology approach. 7th International Symposium on Energy from Biomass and Waste. Venice, Italy 15 - 18 Oct 2019
Greener synthesis of 1, 2 butylene carbonate from CO2 using graphene-inorganic nanocomposite catalysis
Onyenkeadi, V, Kellici, S and Saha, B (2017). Greener synthesis of 1, 2 butylene carbonate from CO2 using graphene-inorganic nanocomposite catalysis. SEEP 2017 –10th International Conference on Sustainable Energy & Environmental Protection. Bled, Slovenia 27 - 30 Jun 2017 London South Bank University.
Catalysis in multifunctional reactors
Mahajani, S and Saha, B (2016). Catalysis in multifunctional reactors. Physical Sciences Reviews. 1 (2).
Environmentally benign biodiesel production from renewable sources
Zainal Abidin, S and Saha, B (2017). Environmentally benign biodiesel production from renewable sources. in: Mujtaba, IM, Srinivasan, R and Elbashir, NO (ed.) The Water-Food-Energy Nexus Processes, Technologies, and Challenges Boca Raton, Florida, USA CRC Press.
Greener synthesis of styrene carbonate from CO2 using graphene-inorganic nanocomposite catalysts
Onyenkeadi, V, Kellici, S and Saha, B (2017). Greener synthesis of styrene carbonate from CO2 using graphene-inorganic nanocomposite catalysts. 10th World Congress of Chemical Engineering (WCCE10). Barcelona, Spain 01 - 05 Oct 2017 London South Bank University.
Optimising biodiesel production from waste cooking oil using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). Optimising biodiesel production from waste cooking oil using supercritical methanol. London South Bank University.
Greener and sustainable approach for the synthesis of commercially important epoxide building blocks using polymer-supported Mo(VI) complexes as catalysts
Mohammed, ML and Saha, B (2016). Greener and sustainable approach for the synthesis of commercially important epoxide building blocks using polymer-supported Mo(VI) complexes as catalysts. in: SenGupta, AK (ed.) Ion Exchange and Solvent Extraction CRC Press: Taylor & Francis Group LLC.
Greener synthesis of styrene carbonate from CO2 using heterogeneous catalyst
Onyenkeadi, V and Saha, B (2017). Greener synthesis of styrene carbonate from CO2 using heterogeneous catalyst. ChemEngDayUK2017 Better Life, Better World. Birmingham 27 - 28 Mar 2017 London South Bank University.
Carbon dioxide utilization by graphene based nanocomposite materials as catalysts
Saha, B (2017). Carbon dioxide utilization by graphene based nanocomposite materials as catalysts. International Conference on Nanotechnology Applications: Chemical, Energy and Environment (NACEE-2017). Surat, India 22 - 23 Mar 2017 London South Bank University.
Biodiesel production from high acid value waste cooking oil using supercritical methanol: Esterification kinetics of free fatty acids
Aboelazayem, O, Abdelaziz, O, Gadalla, M, Hulteberg, C and Saha, B (2017). Biodiesel production from high acid value waste cooking oil using supercritical methanol: Esterification kinetics of free fatty acids. EUBCE 2017 – Proceedings of the 25th European Biomass Conference and Exhibition. Stockholm, Sweden 12 - 15 Jun 2017 London South Bank University.
Optimising biodiesel production from high acid value waste cooking oil using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). Optimising biodiesel production from high acid value waste cooking oil using supercritical methanol. SEEP 2017 – Proceedings of the 10th International Conference on Sustainable Energy & Environmental Protection. Bled, Slovenia 27 - 30 Jun 2017 London South Bank University.
A comparative study on biodiesel production from waste cooking oils obtained from different sources using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). A comparative study on biodiesel production from waste cooking oils obtained from different sources using supercritical methanol. Journal of Bioremediation & Biodegradation. 8 (5), pp. 56-56.
Optimisation of biodiesel production from waste cooking oil under supercritical conditions
Aboelazayem, O, Gadalla, M and Saha, B (2016). Optimisation of biodiesel production from waste cooking oil under supercritical conditions. Venice 2016 – Proceedings of the 6th International Symposium on Energy from Biomass and Waste. Venice, Italy 14 - 16 Nov 2016 London South Bank University.
An experimental-based energy integrated process for biodiesel production from waste cooking oil using supercritical methanol
Aboelazayem, O, Gadalla, M and Saha, B (2017). An experimental-based energy integrated process for biodiesel production from waste cooking oil using supercritical methanol. Chemical Engineering Transactions. 61.
Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation
Saha, B, Aboelazayem, O and Gadalla, M (2017). Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation. Renewable Energy.
Green Process Engineering as the Key to Future Processes
Patel, D, Kellici, S and Saha, B (2014). Green Process Engineering as the Key to Future Processes. Processes. 2 (1), pp. 311-332.
Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach
Kellici, S, Acord, J, Power, N, Morgan, D, Coppo, P, Heil, T and Saha, B (2017). Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. RSC Advances. 7, pp. 14716-14720.
Greener and Sustainable Alkene Epoxidation Process
Saha, B, Mohammed, ML and Mbeleck, R (2016). Greener and Sustainable Alkene Epoxidation Process. 1st BUE Annual Conference & Exhibition-BUE ACE1. Cairo, Egypt 08 - 10 Nov 2016 London South Bank University.
Efficient and selective polymer supported Mo(VI) catalyst for alkene epoxidation in batch and continuous reactors
Saha, B, Mohammed, ML and Mbeleck, R (2015). Efficient and selective polymer supported Mo(VI) catalyst for alkene epoxidation in batch and continuous reactors. Polymer Chemistry.
A continuous-flow apprach to alkene epoxidation catalysed by Polystyrene 2-(Aminomethyl)Pyridine supported Mo(VI) complex
Saha, B, Mohammed, ML and Mbeleck, R (2016). A continuous-flow apprach to alkene epoxidation catalysed by Polystyrene 2-(Aminomethyl)Pyridine supported Mo(VI) complex. 5th International Conference on Green Process Engineering (GPE 2016),. Quebec, Canada 19 - 24 Jun 2016 London South Bank University.
Efficient and selective molybdenum based heterogeneous catalyst for alkene epoxidation using batch and continuous reactors
Mohammed, ML, Mbeleck, R and Saha, B (2015). Efficient and selective molybdenum based heterogeneous catalyst for alkene epoxidation using batch and continuous reactors. Polymer Chemistry. 6, pp. 7308-7319.