A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus

Journal article


Haas, M. J., Barr, M. R., Phillips, J. and Wagner, K. M. (2015). A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus. Journal of the American Oil Chemists' Society. 92 (9), pp. 1357-1363. https://doi.org/10.1007/s11746-015-2695-3
AuthorsHaas, M. J., Barr, M. R., Phillips, J. and Wagner, K. M.
Abstract

Commercially available refined vegetable oils were investigated as calibration standards for the filtration device and protocol specified by ASTM D7501 for conducting the biodiesel cold soak filtration test. Filtration time was determined to be a function of the amount of vacuum applied during filtration, with an 8 % change in the filtration time of soybean oil occurring across the vacuum range specified by ASTM D7501. At a constant vacuum of 57 cm Hg the mean filtration time of 150 mL of soybean oil was independent of operator, device, and oil lot number. Mean filtration time was also largely independent of brand: the average of the mean filtration times of replicate samples of seven brands of soybean oil was 396 s with a minimum significant difference (MSD) of 28 s, and the filtration times of seven of eight brands of soybean oil tested fell within this MSD. Refined edible-grade corn, canola, peanut, safflower and sunflower oils gave reliable filtration times and would be suitable standards. Each oil exhibited a characteristic filtration time, all greater than that for soy oil. Filtration times were an approximately linear function of kinematic viscosities, as predicted by Darcy's Law. Edible vegetable oils can serve as reliable, affordable, consistent and generally available materials for confirming the operability of the filtration device used in the biodiesel cold soak filtration test.

KeywordsASTM D6751; ASTM D7501; Biodiesel; Cold soak filtration test
Year2015
JournalJournal of the American Oil Chemists' Society
Journal citation92 (9), pp. 1357-1363
PublisherWiley
ISSN1558-9331
Digital Object Identifier (DOI)https://doi.org/10.1007/s11746-015-2695-3
Web address (URL)https://aocs.onlinelibrary.wiley.com/doi/full/10.1007/s11746-015-2695-3
Publication dates
Online02 Aug 2015
Publication process dates
Accepted16 Jul 2015
Deposited29 Aug 2023
Accepted author manuscript
License
File Access Level
Open
Additional information

Copyright © 2015 Owner. This is the peer reviewed version of the following article: A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus, which has been published in final form at https://aocs.onlinelibrary.wiley.com/doi/full/10.1007/s11746-015-269... This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

Permalink -

https://openresearch.lsbu.ac.uk/item/94v7q

  • 46
    total views
  • 46
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Ionic Liquid Processing of Residual Wood Powder into Additive-Free Wood Composites
Barr, M.R. and Lee, K.Y. (2024). Ionic Liquid Processing of Residual Wood Powder into Additive-Free Wood Composites. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02586-1
Biochar-based wastewater treatment to combat antimicrobial resistance
Fady, P.-E., Richardson, A. K., Barron, L. P., Mason, A. J., Volpe, R. and Barr, M. R. (2022). Biochar-based wastewater treatment to combat antimicrobial resistance. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 https://doi.org/10256/21215
Producing cellulose-reinforced biocomposite films from biomass using ionic liquids
Barr, M. and Lee, K.-Y. (2022). Producing cellulose-reinforced biocomposite films from biomass using ionic liquids. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 University of Girona. https://doi.org//10256/21215
Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars
Barr, M. R., Forster, L., D’Agostino, C. and Volpe, R. (2022). Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars. Applied Surface Science. 571, p. 151253. https://doi.org/10.1016/j.apsusc.2021.151253
Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography
Barr, M. R., Jervis, R., Zhang, Y., Bodey, A. J., Rau, C., Shearing, P. R., Brett, D. J. L., Titirici, M.-M. and Volpe, R. (2021). Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Scientific Reports. 11, p. 2656. https://doi.org/10.1038/s41598-020-80228-x
Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design. ACS Sustainable Chemistry & Engineering. 9 (16), p. 5603–5612. https://doi.org/10.1021/acssuschemeng.1c00051
Liquid biofuels from food crops in transportation – A balance sheet of outcomes
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Liquid biofuels from food crops in transportation – A balance sheet of outcomes. Chemical Engineering Science: X. 10, p. 100090. https://doi.org/10.1016/j.cesx.2021.100090
X-Ray Image Analysis Code
Barr, M. R. (2020). X-Ray Image Analysis Code. OpenAIRE. https://doi.org/10.5281/zenodo.3742013
Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity
Barr, M., Kung, K. S., Thengane, S. K., Mohan, V., Sweeney, D. and Ghoniem, A. F. (2020). Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity. Fuel. 266, p. 117152. https://doi.org/10.1016/j.fuel.2020.117152
Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass.
Volpe, M., Messineo, A., Makela, M., Barr, M. R., Volpe, R., Corrado, C. and Fiori, L. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology. 206, p. 106456. https://doi.org/10.1016/j.fuproc.2020.106456
On the suitability of thermogravimetric balances for the study of biomass pyrolysis
Barr, M., Volpe, M., Messineo, A. and Volpe, R. (2020). On the suitability of thermogravimetric balances for the study of biomass pyrolysis. Fuel. 276, p. 118069. https://doi.org/10.1016/j.fuel.2020.118069
Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography
Barr, M. R., Zhang Y., Jervis R., Bodey A., Rau C. and Volpe R. (2019). Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography. Centre of Advanced Materials for Integrated Energy Systems Workshop: Multi-Modal Characterisation of Energy Materials . Cambridge, UK 06 Nov 2019
Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography
Barr, M. R., Zhang, Y., Jervis, R. and Volpe, R. (2019). Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography. American Chemical Society Fall 2019 National Meeting & Exposition. San Diego, CA, USA 25 - 29 Aug 2019
Influence of Reactor Design on Product Distributions from Biomass Pyrolysis
Barr, M., Volpe, R. and Kandiyoti, R. (2019). Influence of Reactor Design on Product Distributions from Biomass Pyrolysis. ACS Sustainable Chemistry & Engineering. 7 (16), p. 13734–13745. https://doi.org/10.1021/acssuschemeng.9b01368