Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity

Journal article


Barr, M., Kung, K. S., Thengane, S. K., Mohan, V., Sweeney, D. and Ghoniem, A. F. (2020). Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity. Fuel. 266, p. 117152. https://doi.org/10.1016/j.fuel.2020.117152
AuthorsBarr, M., Kung, K. S., Thengane, S. K., Mohan, V., Sweeney, D. and Ghoniem, A. F.
Abstract

Several studies have shown that torrefaction can improve various characteristics of biomass, including grindability, flowability, and energy density, at least at the microscopic level. Furthermore, the improvements are often represented as a monotonic function of the torrefaction severity. However, the existing literature is less clear on whether or not these improvements persist at the aggregate level. This paper demonstrates that, at the aggregate level, using differently torrefied biomass in an experimental cookstove as a case study, the relationship between the improvements and torrefaction severity tells a much more complex story than a simple, monotonic correlation. Notably, by defining and measuring various cookstove performance characteristics ranging from stove temperature, effective heat output, and emission profiles, and how these characteristics vary with the severity of torrefied fuel, we conclude that, contrary to the conventional wisdom, more severe torrefaction in many cases does not always lead to more improved fuel characteristics.

KeywordsBiomass torrefaction; Cooking fuel; Binder; Emissions; Combustion; Briquette
Year2020
JournalFuel
Journal citation266, p. 117152
PublisherElsevier
ISSN0016-2361
Digital Object Identifier (DOI)https://doi.org/10.1016/j.fuel.2020.117152
Web address (URL)https://www.sciencedirect.com/science/article/pii/S0016236120301472
Publication dates
Print15 Apr 2020
Online28 Jan 2020
Publication process dates
Accepted19 Jan 2020
Deposited29 Aug 2023
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/94v78

Download files


Accepted author manuscript
Barr_Kung_latest manuscript version.docx
License: CC BY-NC-ND 4.0
File access level: Open

  • 40
    total views
  • 18
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Ionic Liquid Processing of Residual Wood Powder into Additive-Free Wood Composites
Barr, M.R. and Lee, K.Y. (2024). Ionic Liquid Processing of Residual Wood Powder into Additive-Free Wood Composites. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-024-02586-1
Biochar-based wastewater treatment to combat antimicrobial resistance
Fady, P.-E., Richardson, A. K., Barron, L. P., Mason, A. J., Volpe, R. and Barr, M. R. (2022). Biochar-based wastewater treatment to combat antimicrobial resistance. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 https://doi.org/10256/21215
Producing cellulose-reinforced biocomposite films from biomass using ionic liquids
Barr, M. and Lee, K.-Y. (2022). Producing cellulose-reinforced biocomposite films from biomass using ionic liquids. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 University of Girona. https://doi.org//10256/21215
Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars
Barr, M. R., Forster, L., D’Agostino, C. and Volpe, R. (2022). Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars. Applied Surface Science. 571, p. 151253. https://doi.org/10.1016/j.apsusc.2021.151253
Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography
Barr, M. R., Jervis, R., Zhang, Y., Bodey, A. J., Rau, C., Shearing, P. R., Brett, D. J. L., Titirici, M.-M. and Volpe, R. (2021). Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Scientific Reports. 11, p. 2656. https://doi.org/10.1038/s41598-020-80228-x
Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design. ACS Sustainable Chemistry & Engineering. 9 (16), p. 5603–5612. https://doi.org/10.1021/acssuschemeng.1c00051
Liquid biofuels from food crops in transportation – A balance sheet of outcomes
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Liquid biofuels from food crops in transportation – A balance sheet of outcomes. Chemical Engineering Science: X. 10, p. 100090. https://doi.org/10.1016/j.cesx.2021.100090
X-Ray Image Analysis Code
Barr, M. R. (2020). X-Ray Image Analysis Code. OpenAIRE. https://doi.org/10.5281/zenodo.3742013
Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass.
Volpe, M., Messineo, A., Makela, M., Barr, M. R., Volpe, R., Corrado, C. and Fiori, L. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology. 206, p. 106456. https://doi.org/10.1016/j.fuproc.2020.106456
On the suitability of thermogravimetric balances for the study of biomass pyrolysis
Barr, M., Volpe, M., Messineo, A. and Volpe, R. (2020). On the suitability of thermogravimetric balances for the study of biomass pyrolysis. Fuel. 276, p. 118069. https://doi.org/10.1016/j.fuel.2020.118069
Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography
Barr, M. R., Zhang Y., Jervis R., Bodey A., Rau C. and Volpe R. (2019). Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography. Centre of Advanced Materials for Integrated Energy Systems Workshop: Multi-Modal Characterisation of Energy Materials . Cambridge, UK 06 Nov 2019
Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography
Barr, M. R., Zhang, Y., Jervis, R. and Volpe, R. (2019). Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography. American Chemical Society Fall 2019 National Meeting & Exposition. San Diego, CA, USA 25 - 29 Aug 2019
Influence of Reactor Design on Product Distributions from Biomass Pyrolysis
Barr, M., Volpe, R. and Kandiyoti, R. (2019). Influence of Reactor Design on Product Distributions from Biomass Pyrolysis. ACS Sustainable Chemistry & Engineering. 7 (16), p. 13734–13745. https://doi.org/10.1021/acssuschemeng.9b01368
A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus
Haas, M. J., Barr, M. R., Phillips, J. and Wagner, K. M. (2015). A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus. Journal of the American Oil Chemists' Society. 92 (9), pp. 1357-1363. https://doi.org/10.1007/s11746-015-2695-3