Influence of Reactor Design on Product Distributions from Biomass Pyrolysis

Journal article


Barr, M., Volpe, R. and Kandiyoti, R. (2019). Influence of Reactor Design on Product Distributions from Biomass Pyrolysis. ACS Sustainable Chemistry & Engineering. 7 (16), p. 13734–13745. https://doi.org/10.1021/acssuschemeng.9b01368
AuthorsBarr, M., Volpe, R. and Kandiyoti, R.
Abstract

This paper explores the elements of experimental design that affect outcomes of pyrolysis experiments. Primary pyrolysis products are highly reactive, and reactor properties that tend to promote or suppress their secondary reactions play a key role in determining final product distributions. In assessing particular experimental designs, it is often useful to compare results from different configurations under similar experimental conditions. In the case of pure cellulose, char yields from pyrolysis experiments were observed to vary between 1 and 26%, as a function of changes in reactor design and associated operating parameters. Most other examples have been selected from the pyrolysis of ligno-cellulosic biomass and its main constituents, although relevant data from coal pyrolysis experiments have also been examined. The work focuses on identifying the ranges of conditions where diverse types of reactors provide more dependable data. The greater reliability of fluidized-bed reactors for weight loss (total volatile) determinations in the 300–550 °C range, particularly relevant to the study of biomass pyrolysis, has been highlighted and compared with challenges encountered in using wire-mesh reactors and thermogravimetric balances in this temperature range.

KeywordsBiomass pyrolysis; Thermogravimetric analysis; Reactor design
Year2019
JournalACS Sustainable Chemistry & Engineering
Journal citation7 (16), p. 13734–13745
PublisherAmerican Chemical Society (ACS)
ISSN2168-0485
Digital Object Identifier (DOI)https://doi.org/10.1021/acssuschemeng.9b01368
Web address (URL)https://pubs.acs.org/doi/10.1021/acssuschemeng.9b01368
Publication dates
Print19 Aug 2019
Online03 Jul 2019
Publication process dates
Deposited17 Aug 2023
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/94v79

Download files


Accepted author manuscript
Reactor_Design_ACS_SusChem_AcceptedManuscript.docx
License: CC BY 4.0
File access level: Open

  • 29
    total views
  • 11
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Biochar-based wastewater treatment to combat antimicrobial resistance
Fady, P.-E., Richardson, A. K., Barron, L. P., Mason, A. J., Volpe, R. and Barr, M. R. (2022). Biochar-based wastewater treatment to combat antimicrobial resistance. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 https://doi.org/10256/21215
Producing cellulose-reinforced biocomposite films from biomass using ionic liquids
Barr, M. and Lee, K.-Y. (2022). Producing cellulose-reinforced biocomposite films from biomass using ionic liquids. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 University of Girona. https://doi.org//10256/21215
Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars
Barr, M. R., Forster, L., D’Agostino, C. and Volpe, R. (2022). Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars. Applied Surface Science. 571, p. 151253. https://doi.org/10.1016/j.apsusc.2021.151253
Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography
Barr, M. R., Jervis, R., Zhang, Y., Bodey, A. J., Rau, C., Shearing, P. R., Brett, D. J. L., Titirici, M.-M. and Volpe, R. (2021). Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Scientific Reports. 11, p. 2656. https://doi.org/10.1038/s41598-020-80228-x
Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design. ACS Sustainable Chemistry & Engineering. 9 (16), p. 5603–5612. https://doi.org/10.1021/acssuschemeng.1c00051
Liquid biofuels from food crops in transportation – A balance sheet of outcomes
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Liquid biofuels from food crops in transportation – A balance sheet of outcomes. Chemical Engineering Science: X. 10, p. 100090. https://doi.org/10.1016/j.cesx.2021.100090
X-Ray Image Analysis Code
Barr, M. R. (2020). X-Ray Image Analysis Code. OpenAIRE. https://doi.org/10.5281/zenodo.3742013
Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity
Barr, M., Kung, K. S., Thengane, S. K., Mohan, V., Sweeney, D. and Ghoniem, A. F. (2020). Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity. Fuel. 266, p. 117152. https://doi.org/10.1016/j.fuel.2020.117152
Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass.
Volpe, M., Messineo, A., Makela, M., Barr, M. R., Volpe, R., Corrado, C. and Fiori, L. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology. 206, p. 106456. https://doi.org/10.1016/j.fuproc.2020.106456
On the suitability of thermogravimetric balances for the study of biomass pyrolysis
Barr, M., Volpe, M., Messineo, A. and Volpe, R. (2020). On the suitability of thermogravimetric balances for the study of biomass pyrolysis. Fuel. 276, p. 118069. https://doi.org/10.1016/j.fuel.2020.118069
Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography
Barr, M. R., Zhang Y., Jervis R., Bodey A., Rau C. and Volpe R. (2019). Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography. Centre of Advanced Materials for Integrated Energy Systems Workshop: Multi-Modal Characterisation of Energy Materials . Cambridge, UK 06 Nov 2019
Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography
Barr, M. R., Zhang, Y., Jervis, R. and Volpe, R. (2019). Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography. American Chemical Society Fall 2019 National Meeting & Exposition. San Diego, CA, USA 25 - 29 Aug 2019
A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus
Haas, M. J., Barr, M. R., Phillips, J. and Wagner, K. M. (2015). A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus. Journal of the American Oil Chemists' Society. 92 (9), pp. 1357-1363. https://doi.org/10.1007/s11746-015-2695-3