Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars

Journal article


Barr, M. R., Forster, L., D’Agostino, C. and Volpe, R. (2022). Alkaline pretreatment of walnut shells increases pore surface hydrophilicity of derived biochars. Applied Surface Science. 571, p. 151253. https://doi.org/10.1016/j.apsusc.2021.151253
AuthorsBarr, M. R., Forster, L., D’Agostino, C. and Volpe, R.
Abstract

The surface chemistry and morphology of biochars produced by pyrolysis of walnut shells affects their utility for adsorption applications. Yet, little is known about surface interactions in the pores of these materials, mostly due to the challenging nature of accessing information at this length scale in a non-destructive manner. Here, for the first time, the relative adsorption strengths of solvents comprising different functional groups to internal (pore) surfaces of walnut shells and derived biochars were investigated using low-field nuclear magnetic resonance (NMR) relaxation time measurements to non-destructively probe interactions of fluids with pore surfaces. Carbon bonding state compositions of these materials with respect to distance from the particle surface were determined using X-ray photoelectron spectroscopy coupled with ion beam etching. Alkaline pretreatment was found to increase the hydrophilicity of both walnut shells and derived biochars. It was found to increase surface interactions with hydroxyl groups, and to decrease those with methyl groups. Results were contextualised by thermogravimetric analysis, scanning electron microscopy, and previous in-situ X-ray imaging results. Taken together, results showed that alkaline pretreatment may be used to modulate responses to pyrolysis temperature of several factors that affect adsorption properties including surface hydrophilicity, particle size, porosity, pore accessibility, and surface texture.

KeywordsBiomass; Electron microscopy; NMR spectroscopy;Photoelectron spectroscopy; Surface chemistry
Year2022
JournalApplied Surface Science
Journal citation571, p. 151253
PublisherElsevier
ISSN1873-5584
Digital Object Identifier (DOI)https://doi.org/10.1016/j.apsusc.2021.151253
Web address (URL)https://www.sciencedirect.com/science/article/pii/S0169433221023060
Publication dates
Print01 Jan 2022
Online13 Sep 2021
Publication process dates
Accepted08 Sep 2021
Deposited18 Aug 2023
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/94v66

Download files


Accepted author manuscript
APSUSC-D-21-08758 Revised manuscript.docx
License: CC BY 4.0
File access level: Open

  • 21
    total views
  • 10
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Biochar-based wastewater treatment to combat antimicrobial resistance
Fady, P.-E., Richardson, A. K., Barron, L. P., Mason, A. J., Volpe, R. and Barr, M. R. (2022). Biochar-based wastewater treatment to combat antimicrobial resistance. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 https://doi.org/10256/21215
Producing cellulose-reinforced biocomposite films from biomass using ionic liquids
Barr, M. and Lee, K.-Y. (2022). Producing cellulose-reinforced biocomposite films from biomass using ionic liquids. XII Iberoamerican Congress on Pulp and Paper Research. Girona, Spain 28 Jun - 01 Jul 2022 University of Girona. https://doi.org//10256/21215
Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography
Barr, M. R., Jervis, R., Zhang, Y., Bodey, A. J., Rau, C., Shearing, P. R., Brett, D. J. L., Titirici, M.-M. and Volpe, R. (2021). Towards a mechanistic understanding of particle shrinkage during biomass pyrolysis via synchrotron X-ray microtomography and in-situ radiography. Scientific Reports. 11, p. 2656. https://doi.org/10.1038/s41598-020-80228-x
Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Identifying Synergistic Effects between Biomass Components during Pyrolysis and Pointers Concerning Experiment Design. ACS Sustainable Chemistry & Engineering. 9 (16), p. 5603–5612. https://doi.org/10.1021/acssuschemeng.1c00051
Liquid biofuels from food crops in transportation – A balance sheet of outcomes
Barr, M. R., Volpe, R. and Kandiyoti, R. (2021). Liquid biofuels from food crops in transportation – A balance sheet of outcomes. Chemical Engineering Science: X. 10, p. 100090. https://doi.org/10.1016/j.cesx.2021.100090
X-Ray Image Analysis Code
Barr, M. R. (2020). X-Ray Image Analysis Code. OpenAIRE. https://doi.org/10.5281/zenodo.3742013
Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity
Barr, M., Kung, K. S., Thengane, S. K., Mohan, V., Sweeney, D. and Ghoniem, A. F. (2020). Characterization of aggregate behaviors of torrefied biomass as a function of reaction severity. Fuel. 266, p. 117152. https://doi.org/10.1016/j.fuel.2020.117152
Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass.
Volpe, M., Messineo, A., Makela, M., Barr, M. R., Volpe, R., Corrado, C. and Fiori, L. (2020). Reactivity of cellulose during hydrothermal carbonization of lignocellulosic biomass. Fuel Processing Technology. 206, p. 106456. https://doi.org/10.1016/j.fuproc.2020.106456
On the suitability of thermogravimetric balances for the study of biomass pyrolysis
Barr, M., Volpe, M., Messineo, A. and Volpe, R. (2020). On the suitability of thermogravimetric balances for the study of biomass pyrolysis. Fuel. 276, p. 118069. https://doi.org/10.1016/j.fuel.2020.118069
Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography
Barr, M. R., Zhang Y., Jervis R., Bodey A., Rau C. and Volpe R. (2019). Towards resolving mechanisms of particle shrinking during biomass pyrolysis via micro-computed tomography and in-situ radiography. Centre of Advanced Materials for Integrated Energy Systems Workshop: Multi-Modal Characterisation of Energy Materials . Cambridge, UK 06 Nov 2019
Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography
Barr, M. R., Zhang, Y., Jervis, R. and Volpe, R. (2019). Study of char morphology during biomass pyrolysis and gasification via micro-computed tomography. American Chemical Society Fall 2019 National Meeting & Exposition. San Diego, CA, USA 25 - 29 Aug 2019
Influence of Reactor Design on Product Distributions from Biomass Pyrolysis
Barr, M., Volpe, R. and Kandiyoti, R. (2019). Influence of Reactor Design on Product Distributions from Biomass Pyrolysis. ACS Sustainable Chemistry & Engineering. 7 (16), p. 13734–13745. https://doi.org/10.1021/acssuschemeng.9b01368
A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus
Haas, M. J., Barr, M. R., Phillips, J. and Wagner, K. M. (2015). A Simple Standardization Method for the Biodiesel Cold Soak Filtration Apparatus. Journal of the American Oil Chemists' Society. 92 (9), pp. 1357-1363. https://doi.org/10.1007/s11746-015-2695-3