A Deep Graph Cut Model for 3D Brain Tumor Segmentation
Conference paper
De, A., Tiwari, M., Grisan, E. and Chowdhury, A.S. (2022). A Deep Graph Cut Model for 3D Brain Tumor Segmentation. 44th International Engineering in Medicine and Biology Conference (EMBC 2022). Glasgow (UK) 11 - 15 Jul 2022 Institute of Electrical and Electronics Engineers (IEEE).
Authors | De, A., Tiwari, M., Grisan, E. and Chowdhury, A.S. |
---|---|
Type | Conference paper |
Abstract | Brain tumor segmentation plays a key role in tumor diagnosis and surgical planning. In this paper, we propose a solution to the 3D brain tumor segmentation problem using deep learning and graph cut from the MRI data. In particular, the probability maps of a voxel to belong to the object (tumor) and background classes from the UNet are used to improve the energy function of the graph cut. We derive new expressions for the data term, the region term and the weight factor balancing the data term and the region term for individual voxels in our proposed model. We validate the performance of our model on the publicly available BRATS 2018 dataset. Our segmentation accuracy with a dice similarity score of 0.92 is found to be higher than that of the graph cut and the UNet applied in isolation as well as over a number of state of the art approaches. |
Year | 2022 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Web address (URL) | https://embc.embs.org/2022/ |
Accepted author manuscript | License File Access Level Open |
Publication dates | |
15 Jul 2022 | |
Publication process dates | |
Accepted | 04 Apr 2022 |
Deposited | 29 Apr 2022 |
Additional information | © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
https://openresearch.lsbu.ac.uk/item/8zqz3
Download files
141
total views164
total downloads1
views this month1
downloads this month