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Abstract— Brain tumor segmentation plays a key role in
tumor diagnosis and surgical planning. In this paper, we
propose a solution to the 3D brain tumor segmentation problem
using deep learning and graph cut from the MRI data. In
particular, the probability maps of a voxel to belong to the
object (tumor) and background classes from the UNet are used
to improve the energy function of the graph cut. We derive
new expressions for the data term, the region term and the
weight factor balancing the data term and the region term
for individual voxels in our proposed model. We validate the
performance of our model on the publicly available BRATS
2018 dataset. Our segmentation accuracy with a dice similarity
score of 0.92 is found to be higher than that of the graph cut
and the UNet applied in isolation as well as over a number of
state of the art approaches.

I. INTRODUCTION

Formation of abnormal groups of cells inside or near the
brain leads to brain tumor. These abnormal cells disrupt
normal brain functions thereby leading to considerable degra-
dation of the health of a patient.

A challenge faced by the radiologist and the neurosurgeon
is to demarcate the tumor margins when the lesion is poorly
defined and is diffusely infiltrative. Recently, there have been
concerns about the usage of Gadolinium and its deposition
in the brain. Neuro-radiologists would prefer a shorter but
accurate way of identifying tumors that can speed up the pre-
operative diagnosis, maybe by using only a few essential MR
sequences. A pre-operative assessment of the tumor using
3D visualization techniques help in planning the surgical
path and trajectory. The surgeon can then avoid the eloquent
areas, blood vessels and other vital structures during surgery.
This leads to excellent outcome for the patient with minimal
complications and morbidity.

Classical techniques such as level sets [1] and graph cuts
[2] have been extensively used for segmentation [3], where,
domain specific image features (e.g. gradient, intensity, tex-
ture, etc.) can be combined within an energy minimization
framework. However, a majority of these algorithms rely
heavily on initialization such as manual seeding, and are
susceptible to segmentation errors due to unreliable location
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of the initial seed. In recent times, deep convolutional neural
networks (CNN) have shown significant improvement, espe-
cially, in segmentation and classification problems [4]–[6].
However, traditional fully supervised techniques disregard
domain knowledge which could help in better segmentation.
2D CNNs employ 2D convolutional kernels for segmenting
a single slice. Although, they are able to leverage contextual
information across the height and width of the slice to make
predictions, they are unable to extract any information from
the adjacent slices. 3D CNNs mitigate this issue by using
3D convolutional kernels to predict 3D segmentation maps
for a volumetric patch of a scan. This ability to grasp inter-
slice context can improve the segmentation performance [7],
[8]. Recently, good segmentation performance have been
achieved using a modified 3D CNN known as V-Net using
Attention Guided (AG) , Squeeze and Excitation (SE) [9] and
multi depth fusion modules [10]. Combination of classical
and deep learning techniques have been used in solving many
medical imaging problems where data driven and domain
specific approaches have been cascaded or ensembles of both
techniques have been formed [11], [12]. We took inspiration
from [11] where they mixed deep learning and graph cut to
segment lung nodules. However, their work was restricted
to 2D. They also did not modify the terms in the energy
function of the graph cut, which can have significant impact
on the segmentation performance. Furthermore, they used
manual seeds for initialization of the graph cut algorithm. In
sharp contrast, we have addressed the tumor segmentation
problem in 3D. The data term, the smoothness term and the
parameter which relatively weighs these two terms in the
energy function of the graph cut are modified through a 3D
deep learned model. We have further removed the need to
manually initialize the seeds.

In this paper, we propose a deep graph cut model for
segmenting brain tumors in 3D. The proposed approach
combines data driven (graph cut) and domain specific (deep
learning) strategies that are suitable for addressing the com-
plexities of segmenting highly irregular structures like brain
tumor. We term our solution Deep Graph Cut (DGC). DGC
embeds deep learned probability maps of object (tumor) and
background (everything other than tumor) voxels into the
energy function of the graph cut. The deep learned voxel
probabilities make the model highly robust to initialization
errors. On the other hand, the unsupervised graph cut com-
ponent can accurately segment structures through an energy
minimization framework. To motivate the reader, we include
a 3D segmentation result using the proposed method in Fig.
1. In this figure, it is difficult to distinctly identify the tumor
region (marked in red circles) in the 2D views, but the full



Fig. 1: (a) 2D and 3D views of the input image with the tumor
range marked in red circle, (b) Volumetric view of the segmented
tumor region inside the brain, (c) 3D view of the segmented tumor
only

segmented tumor is shown in 3D inside the brain and in
another 3D view containing only the segmented tumor (in
green). We now summarize our contributions below:

1) Methodologically speaking, we propose a novel 3D
segmentation framework by combining UNet and
graph cut. In this framework, we derive new expres-
sions for the data term, the smoothness term and the
weighting parameter in the energy function of the
graph cut from the probability maps of tumor and non-
tumor voxels obtained from the UNet.

2) From the application perspective, we solve 3D tumor
segmentation, an important problem in brain imaging
which has a far-reaching impact for the radiologists
and the neurosurgeons.

II. PROPOSED METHOD

In this section, 3D segmentation using UNet and graph cut
are discussed first. We then describe in details our proposed
solution (DGC). The section is completed with Algorithm 1
showing the steps of this DGC.

A. 3D Brain Tumor Segmentation using UNet

We choose 3D UNet [13], a fully convolutional deep
network architecture as it is efficiently handles pixel-wise
semantic labelling. UNet is an encoder-decoder network
widely used for medical image segmentation [14]. This deep
network can yield decent performance even in the absence
of large amount of training data.

B. 3D Brain Tumor Segmentation using Graph Cut

The input MRI is a 3D gray-scale volume which is
represented by a 3D weighted graph G = G(V,E). Each
voxel x is a vertex in G and the set of all voxels is denoted

by X . We consider two additional nodes, ‘source’ and ‘sink’,
which are respectively denoted by s and t. We consider two
types of edges/links, namely, the t-links (T) and the n-links
(N). Each voxel x is connected to s and t via t-links. We use
dense 26-neighborhood, denoted by Ne(x) for each voxel x.
Let y be a neighbour of x. So, y ∈ Ne(x) and we connect x
and y via a n-link. Thus, V = X∪s∪t and E = T∪N . Let us
define a segmentation A, which is a voxel-wise classification
of all voxels into two classes, i.e., either the ”object” or the
”background”. Hence, following [2], we need to minimize
the following energy function:

ζ(A) = B(A) + λR(A) (1)

where B(A) denotes the boundary properties/smoothness
term and R(A) denotes the regional properties/data term of
A. Mathematically, these terms are expressed as:

B(A) =
∑

x∈X,y∈Ne(x)

B(x,y) (2)

R(A) =
∑
x∈X

Rx (3)

C. 3D Brain Tumor Segmentation using Deep Graph Cut
The learned information from 3D UNet is embedded

into the energy function of the 3D graphcut to achieve
accurate segmentation. For each image, the 3D probability
map is extracted from the last convolutional layer to calculate
the probability of any voxel to belong to either tumor or
background. In the proposed deep graph cut (DGC) model,
we introduce a new data term, a new smoothness term and
further combine the proposed data term and smoothness
terms using a variable weight factor.

The 3D UNet estimates a regression function which maps
each voxel of a 3D input image to a corresponding 3D voxel
wise segmentation probability map P : R3 → (0, 1) which
also serves as an automated seed for the graph cut algorithm.
The deep learned data term is expressed as follows:

RDGC(x)(Obj) = − lnPr(x = Obj)UN (4)

RDGC(x)(Bkg) = − lnPr(x = Bkg)UN (5)

where the terms Pr(j = Obj)UN and Pr(j = Bkg)UN re-
spectively indicate the probability of any voxel j to belong to
the object (tumor) class and the background (anything other
than tumor) class obtained from the UNet (UN). Naturally,
∀ j, we have Pr(j = Obj)UN + Pr(j = Bkg)UN = 1.

Brain MRI volumes tend to have low contrast between the
tumor region and its surrounding structures thereby making
the segmentation process difficult. In order to handle such
constraints, we modify the smoothness term. The modifica-
tion relies on the difference in the probabilities of any voxel
and its neighboring voxel to belong to the tumor and the
background classes. The improved smoothness term is given
by:

BDGC(x, y) = K(x,y) exp−(
(Ix − Iy)

2

2σ2
)×

1

d(x, y)
× 1

δ(x, y)DGC

(6)



where the term d(x, y) denotes the Euclidean distance be-
tween two voxels x and y having intensity values Ix and Iy
respectively. The term K(x,y) is based on the probabilities of
these two voxels (x and y) to have the same segmentation
class and is formulated as follows:

K(x,y) = 1− |Pr(x = Obj)UN − Pr(y = Obj)UN | (7)

The value of K(x,y) is higher when the probability of two
neighboring voxels to belong to the same segmentation class
is similar, i.e., when their absolute difference in probability
values are less. The factor σ is chosen manually depending
on image noise level. The term δ(x, y)DGC denotes the sum
of differences between probabilities of neighbouring voxels
x and y to belong to the class tumor (object) and the class
background. This can be expressed as:

δ(x, y)DGC = |Pr(x = Obj)UN − Pr(y = Obj)UN |+
|Pr(x = Bkg)UN − Pr(y = Bkg)UN |

(8)

Note that a low δ(x, y)UN , which is computed from the
probability maps in UNet, leads to higher/better smoothness.

In the graph cut-based segmentation framework, the pa-
rameter λ regulates the relative importance of the smoothness
term and the data term (see Eq. 1). It is crucial to properly
choose this parameter as it largely influences the quality of
the segmentation [2]. Ideally, the optimal value of λ should
neither cause over-segmentation nor under-segmentation.
However, finding an optimal value for this parameter remains
a challenging problem. To remove the dependence on manual
selection of this parameter, we propose in this work an
automated calculation of λ, once again from the probability
maps obtained from the 3D UNet. The calculation is based
on the following careful observations:

1) If a voxel lies deep within the foreground or the
background region, more importance should be given
to the smoothness term. For such an interior voxel, the
surrounding voxels generally have considerably higher
probabilities to belong to the same segmentation class.

2) The data term is given more importance whenever
a voxel lies nearer to edge or boundary region. For
such a terminal voxel, the surrounding voxels usually
have much lower probabilities to belong to the same
segmentation class.

Hence, we write λ ∝ ψUN (x), where ψUN (x) is given by:

ψUN (x) = |Pr(x = Obj)UN − Pr(x = Bkg)UN | (9)

Note that a higher ψUN (x), which is determined from the
probability maps in UNet denotes that the voxel is more
towards the interior of object (tumor). Unlike [15], where the
authors used classical techniques to modify λ, we employed
deep learned probability maps to modify it. Hence, the final
form of λ becomes:

λDGC(x) = PψUN (x) (10)

where P is a constant which maps ψDGC(x) that lies
between [0, 1] to λ that lies between [λMin, λMax]. For our

experiments, we have taken λMin = 1 and λMax = 100.
Finally, combining equations (4), (5), (6) and (10), we get
the final modified energy function as shown below:

ζDGC(A) =
∑

x∈X,y∈Ne(x)

BDGC(x, y)+

λDGC(x)
∑
x∈X

RDGC(x)
(11)

Minimizing the above energy function via graph cut accord-
ing to [2] will result in a 3D segmented image.

Algorithm 1: DGC
Input: Trained 3D UNet model M , 3D voxel grid

graph G, where V is the set of nodes/voxels
and E is the set of edges

Output: 3D grid graph Gout with desired
segmentation

1 Compute data term RDGC(x) for each voxel in
x ∈ G using Equations 4 and 5

2 Compute smoothness term BDGC(x, y) for each
voxel x and its neighbour y ∈ Ne(x) in G as shown
in Equation 6

3 Compute weight factor λ for each voxel in x ∈ G
using Equation 10

4 Compute the final energy function using Equation 11,
perform Graph cut and store the result in Gout.

5 return Gout

III. EXPERIMENTAL RESULTS

In this section, we first discuss data preparation. We then
extensively evaluate our solution including ablation studies
and comparisons with external approaches. We implemented
UNet in Tensorflow [16] and trained it on HP-Z640 worksta-
tion with 14 Core Intel Xeon processor, 128GB of memory
and NVIDIA Titan RTX 24GB dedicated graphics proces-
sor. The network is trained for 500 epochs with stochastic
gradient descent with initial learning rate of 0.0001, weight
decay of 0.00001 and mini-batch size equal to 2 samples. We
have used Adam Optimizer and weighted cross-entropy loss
in the process. For the quantitative performance evaluation,
Dice Similarity Coefficient (DSC) is employed [17].

A. Data Preparation

For experimentation, publicly available BRATS 2018
dataset [18], [19] is used. It is already split into training,
validation and test sets containing 285, 66 and 192 scans
respectively. We use only T1-weighted contrast-enhanced
(T1CE) sequences from each scan for our experiments as we
found T1CE best represents the data in terms of contrast. The
data were publicly made available with some pre-processing,
i.e. they were co-registered to the same anatomical template,
skull-stripped and interpolated to a resolution of 1mm3.
As all the scans were stored in compressed Nifti image
format (i.e. .nii.gz), we used SimpleITK library [20] to
convert nifti format images into 3D numpy array [21]. We
further normalized all input images to have zero mean and



TABLE I: Ablation study I: Graph cut, Graph Cut enhanced
with combinations of (a) DGC data term (b) DGC smooth-
ness term (c) DGC variable weight factor. Best values are
shown in bold.

Modification DSC

Graph Cut (Boykov et al. [2]) 0.53± 0.17

GC with (a) and (b) only 0.883± 0.23

GC with (b) and (c) only 0.856± 0.19

GC with (a) and (c) only 0.87± 0.034

DGC (GC with (a), (b) and (c)) 0.92± 0.073

unit standard deviation (std) based on non-zero voxels only.
For augmentation, we applied a random intensity shift (-
0.1 . . . 0.1 of image intensity std) and scale (0.9 . . . 1.1) on
the input images. We also applied random horizontal flips
(for x axis) with a probability 0.5. As UNet requires the
input image with a specific resolution [22], and to reduce
the memory constraints while minimizing information loss,
we crop each image volume from its original resolution
(240×240×155) to a resolution of (192×192×144). As the
λ parameter is learned from the UNet, only one parameter
(σ) that is used in equation (6), is manually set to 4 during
the training phase after various trials.

(a) GT (b) UNet

(c) Graphcut (d) DGC

Fig. 2: Qualitative comparisons for one dataset: (a) Ground Truth
(GT), (b) Segmentation using 3D UNet (DSC = 0.862), (c) Seg-
mentation using Graph Cut (DSC = 0.812), (d) Segmentation using
DGC (DSC = 0.91)

(a) GT (b) UNet

(c) Graphcut (d) DGC

Fig. 3: Qualitative comparisons for a second dataset: (a) Ground
Truth (GT), (b) Segmentation using 3D UNet (DSC = 0.877), (c)
Segmentation using Graph Cut (DSC = 0.897), (d) Segmentation
using DGC (DSC = 0.934).

TABLE II: Ablation study II: Graph Cut, 3D UNet, DL-GC
in 2D and DGC. Best values are shown in bold.

Algorithm DSC

Graphcut (Boykov et al. [2]) 0.53± 0.17

3D UNet (Çiçek et al. [13]) 0.83± 0.034

DL-GC in 2D (Mukherjee et al. [11]) 0.82± 0.062

DGC 0.92± 0.073

B. Ablation Studies

We have conducted two ablation studies. The first ablation
study is undertaken to demonstrate the individual contribu-
tions of the data term, smoothness term and the variable
weight factor in the proposed DGC algorithm. The results are
shown in Table I. For all the combinations, UNet was used.
As is evident from this table, all the three terms contribute
towards improving the performance of the DGC algorithm.
We also conduct a second ablation study to examine the
contributions of the 3D UNet and the Graph Cut used in
isolation. Qualitative segmentation outputs for two datasets
are illustrated in Fig. 2 and 3. We also implement Mukherjee
et al.’s work [11] where they have modified only the data
term of Graph cut using 2D UNet and required manual
seeding, but we automatically initialized the seed for Graph
Cut using [32]. Table II indicates that DGC algorithm clearly
outperforms basic 3D UNet [13], vanilla Graph cut [2] and
2D-DLGC algorithm [11].

C. Comparison with State of the art Methods
We now compare our method with other state of the

art segmentation approaches in table III. The methods are
diverse in nature with some of them using deep learning
and others are not. Among the methods which have not
employed deep learning, we choose two Graph Cut based
methods, one on random walks [24], one method using
Competitive Expectation Maximization Algorithm [23] and
another using normalization techniques [25]. Among the
deep learning based methods, We use a 2D CNN [29], a 3D
CNN [26], V-Nets [9], [10] and a ensemble 3D UNet [31].
The results of comparisons in Table III are shown only for
whole tumor segmentation with three metrics namely Dice
Score, sensitivity and specificity and it clearly establishes the
superiority of our approach over all the competing methods.
Most of the methods did not show sensitivity and specificity
values and hence we have kept it blank for those methods.

IV. CONCLUSION

Detection, delineation and characterisation of 3D brain
tumors using MR imaging is found to be very important
in guiding the treatment strategy. In this paper, we have
shown how UNet and graph cut can be combined to achieve
better segmentation performance in 3D. New expressions for
the constituent terms in the graph cut energy function are
explicitly derived with help of the probability maps obtained
from the UNet. We have established through comprehensive
experimentation that our proposed deep graph cut model
yields competitive performance on the publicly available



TABLE III: Comparison of State of the art Methods. Best values are shown in bold.

Algorithm DSC Sensitivity Specificity
EM and Graphcut [23] 0.70± 0.21 - -
Random Walks [24] 0.72± 0.08 - -
Normalized Graphcut [25] 0.85 - -
3D CNN [26] 0.85 0.877 -
SegNet 2D [27] 0.85 - -
AGSE V-Net [9] 0.85 0.83 0.99
Multi Depth V-Net [10] 0.86 0.958 0.99
MCCNN 2D [28] 0.87 0.87 -
2D Deep Networks [29] 0.88 0.84 0.88
2D M-UNet [30] 0.90 - -
3D UNet Ensemble [31] 0.90 - -
DGC 0.92± 0.0730.92± 0.0730.92± 0.073 0.94± 0.0030.94± 0.0030.94± 0.003 0.91± 0.0080.91± 0.0080.91± 0.008

BRATS dataset. In future, we will extend the proposed
approach for multi-label tumor segmentation.
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