Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression.

Journal article


Tavazzi, E., Daberdaku, S., Zandonà, A., Vasta, R., Nefussy, B., Lunetta, C., Mora, G., Mandrioli, J., Grisan, E., Tarlarini, C., Calvo, A., Moglia, C., Drory, V., Gotkine, M., Chiò, A., Di Camillo, B. and Piemonte, Valle d’Aosta Register for ALS (PARALS), for the Emilia Romagna Registry for ALS (ERRALS) (2022). Predicting functional impairment trajectories in amyotrophic lateral sclerosis: a probabilistic, multifactorial model of disease progression. Journal of neurology. https://doi.org/10.1007/s00415-022-11022-0
AuthorsTavazzi, E., Daberdaku, S., Zandonà, A., Vasta, R., Nefussy, B., Lunetta, C., Mora, G., Mandrioli, J., Grisan, E., Tarlarini, C., Calvo, A., Moglia, C., Drory, V., Gotkine, M., Chiò, A., Di Camillo, B. and Piemonte, Valle d’Aosta Register for ALS (PARALS), for the Emilia Romagna Registry for ALS (ERRALS)
AbstractTo employ Artificial Intelligence to model, predict and simulate the amyotrophic lateral sclerosis (ALS) progression over time in terms of variable interactions, functional impairments, and survival. We employed demographic and clinical variables, including functional scores and the utilisation of support interventions, of 3940 ALS patients from four Italian and two Israeli registers to develop a new approach based on Dynamic Bayesian Networks (DBNs) that models the ALS evolution over time, in two distinct scenarios of variable availability. The method allows to simulate patients' disease trajectories and predict the probability of functional impairment and survival at different time points. DBNs explicitly represent the relationships between the variables and the pathways along which they influence the disease progression. Several notable inter-dependencies were identified and validated by comparison with literature. Moreover, the implemented tool allows the assessment of the effect of different markers on the disease course, reproducing the probabilistically expected clinical progressions. The tool shows high concordance in terms of predicted and real prognosis, assessed as time to functional impairments and survival (integral of the AU-ROC in the first 36 months between 0.80-0.93 and 0.84-0.89 for the two scenarios, respectively). Provided only with measurements commonly collected during the first visit, our models can predict time to the loss of independence in walking, breathing, swallowing, communicating, and survival and it can be used to generate in silico patient cohorts with specific characteristics. Our tool provides a comprehensive framework to support physicians in treatment planning and clinical decision-making. [Abstract copyright: © 2022. The Author(s).]
KeywordsAmyotrophic lateral sclerosis; Population model; Clinical trajectories; Dynamic Bayesian Networks; Prognosis modelling; Artificial intelligence
Year2022
JournalJournal of neurology
PublisherSpringer
ISSN1432-1459
Digital Object Identifier (DOI)https://doi.org/10.1007/s00415-022-11022-0
Web address (URL)https://link.springer.com/article/10.1007/s00415-022-11022-0
Funder/ClientRegione Emilia-Romagna
Seventh Framework Programme
Ministero dell’Istruzione, dell’Università e della Ricerca
Ministero degli Affari Esteri e della Cooperazione Internazionale
Ministero della Salute
Ministry of Science, Technology and Space of the State of Israel
Publication dates
Print10 Mar 2022
Online10 Mar 2022
Publication process dates
Deposited24 Feb 2022
Accepted09 Feb 2022
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/8z593

Download files


Publisher's version
Tavazzi2022_Article_PredictingFunctionalImpairment.pdf
License: CC BY 4.0
File access level: Open

  • 122
    total views
  • 48
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Study Protocol: Evaluating artificial intelligence-driven stress echocardiography analysis system (EASE study): mixed method study.
Mahdavi, M., Thomas, N., Flood, C., Stewart-Lord, A., Baillie, L., Grisan, E., Callaghan, P., Panayotova, R, Hothi, S, Griffith, V., Jayadev, S. and Frings, D. Study Protocol: Evaluating artificial intelligence-driven stress echocardiography analysis system (EASE study): mixed method study. BMJ Open.
A Consensus Mechanism to Improve Prediction of Cortical Bone Properties using Ultrafast Ultrasound Acquisition
Abdelreheem, H., Grisan, E., Dryburgh, P., Peralta, L. and Harput, S. (2024). A Consensus Mechanism to Improve Prediction of Cortical Bone Properties using Ultrafast Ultrasound Acquisition. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3404644
A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP3 REPORT
Thomas, N., Frings, D., Flood, C., Grisan, E., Wood, K., Daly, N. and Sharma, S. (2024). A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP3 REPORT. London South Bank University.
Artificial Intelligence and Endo-Histo-OMICs: New Dimensions of Precision Endoscopy and Histology in Inflammatory Bowel Disease
Iacucci, M., Santacroce, G., Zanmarchi, I., Maeda, Y., del Amor, R., Meseguer, P., Kolawole, B., Chaudhari, U., Di Sabatino, A., Danese, S., Mori, Y., Grisan, E., Naranjo, V. and Ghosh, S. (2024). Artificial Intelligence and Endo-Histo-OMICs: New Dimensions of Precision Endoscopy and Histology in Inflammatory Bowel Disease. The Lancet Gastroenterology & Hepatology. 9 (8), pp. 758-772. https://doi.org/10.1016/S2468-1253(24)00053-0
Deep learning analysis of plasma emissions: A potential system for monitoring methane and hydrogen in the pyrolysis processes
Salimian, A. and Grisan, E. (2024). Deep learning analysis of plasma emissions: A potential system for monitoring methane and hydrogen in the pyrolysis processes. International Journal of Hydrogen Energy. 58, pp. 1030-1043. https://doi.org/10.1016/j.ijhydene.2024.01.251
A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP1 Accuracy - Phase 2b Evaluation Report
Thomas, N., Frings, D., Flood, C., Grisan, E., Wood, K., Daly, N. and Sharma, S. (2023). A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP1 Accuracy - Phase 2b Evaluation Report. London South Bank University.
A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP1 Accuracy - Phase 2A Evaluation Report
Thomas, N., Frings, D., Flood, C., Grisan, E., Wood, K., Daly, N. and Sharma, S. (2023). A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP1 Accuracy - Phase 2A Evaluation Report. London South Bank University.
Age-related changes in the primary auditory cortex of newborn, adults and aging bottlenose dolphins (Tursiops truncatus) are located in the upper cortical layers
Graïc, J., Corain, L, Finos, L., Vadori, V., Grisan, E., Gerussi, T., Orekhova, K., Centelleghe, C, Cozzi, B. and Peruffo, A. (2023). Age-related changes in the primary auditory cortex of newborn, adults and aging bottlenose dolphins (Tursiops truncatus) are located in the upper cortical layers. Frontiers in Neuroanatomy. 17. https://doi.org/10.3389/fnana.2023.1330384
Cortical Bone Thickness Assessment from Multi-frequency Ultrasound RF Data using a Convolutional Architecture with Multi-head Attention
Sultan, H.H., Grisan, E., Dryburgh, P., Peralta, L. and Harput, S. (2023). Cortical Bone Thickness Assessment from Multi-frequency Ultrasound RF Data using a Convolutional Architecture with Multi-head Attention. 2023 IEEE International Ultrasonics Symposium (IUS). Montreal, QC, Canada 03 - 08 Sep 2023 IEEE. https://doi.org/10.1109/ius51837.2023.10307373
A novel DSP zebrafish model reveals training- and drug-induced modulation of arrhythmogenic cardiomyopathy phenotypes
Celeghin, R., Risato, G., Beffagna, G., Cason, M., Bueno Marinas, M., Della Barbera, M., Facchinello, N., Giuliodori, A., Brañas Casas, R., Caichiolo, M., Vettori, V., Grisan, E., Rizzo, S., Dalla Valle, L., Francesco Argenton, Thiene, G., Tiso, N., Pilichou, K. and Basso, N. (2023). A novel DSP zebrafish model reveals training- and drug-induced modulation of arrhythmogenic cardiomyopathy phenotypes. Cell Death Discovery . 9 (441). https://doi.org/10.1038/s41420-023-01741-2
Mr-Nom: Multi-Scale Resolution of Neuronal Cells in Nissl-Stained Histological Slices Via Deliberate over-Segmentation and Merging
Vadori, V., Graïc, J-M., Finos, L., Corain, L., Peruffo, A. and Grisan, E. (2023). Mr-Nom: Multi-Scale Resolution of Neuronal Cells in Nissl-Stained Histological Slices Via Deliberate over-Segmentation and Merging. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). Cartegena de Indias, Colombia 18 - 21 Apr 2023 IEEE. https://doi.org/10.1109/isbi53787.2023.10230352
Cytoarchitectureal changes in hippocampal subregions of the NZB/W F1 mouse model of lupus
Graïc, J-M., Finos, L., Cozzi, B., Luisetto, R., Gerussi, T, Doria, A., Vadori, V., Grisan, E., Corain, L. and Peruffo, A. (2023). Cytoarchitectureal changes in hippocampal subregions of the NZB/W F1 mouse model of lupus. Brain, Behavior and Immunity. 32 (October), p. 100662. https://doi.org/10.1016/j.bbih.2023.100662
Artificial Intelligence enabled histological prediction of remission or activity and clinical outcomes in ulcerative colitis
Iacucci, M., Parigi, T.L., del Amor, R., Meseguer, P., Mandelli, G., Bozzola, A., Bazarova, A., Bhandari, P., Bisschops, R., Danese, S., De Hertogh, G., Ferraz, J.G., Goetz, M., Grisan, E., Gui, X., Hayee, B., Kiesslich, R., Lazarev, M., Panaccione, R., Parra-Blanco, A., Pastorelli, L., Rath, T., Royset, E.S., Tontini, G.E., Vath, M., Zardo, D., Ghosh, S., Naranjo, V. and Villanacci, V. (2023). Artificial Intelligence enabled histological prediction of remission or activity and clinical outcomes in ulcerative colitis. Gastroenterology. https://doi.org/10.1053/j.gastro.2023.02.031
A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments
Thomas, N., Frings, D., Flood, C., Grisan, E., Wood, K., Daly, N. and Sharma, S. (2022). A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments. London South Bank University.
A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP1 Accuracy - Phase 1 Evaluation Report
Thomas, N., Frings, D., Flood, C., Grisan, E., Wood, K., Daly, N. and Sharma, S. (2022). A pragmatic trial of an Artificial intelligence DRiven appOInTment maNagEment SyStem (ADROITNESS) in NHS outpatient departments: WP1 Accuracy - Phase 1 Evaluation Report. London South Bank University.
Estimation of Cortical Bone Strength Using CNN-based Regression Model
Sultan, Hossam H., Grisan, E., Peralta, L. and Harput, S. (2022). Estimation of Cortical Bone Strength Using CNN-based Regression Model. 2022 IEEE International Ultrasonics Symposium (IUS). Venice, Italy 10 - 13 Oct 2022 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ius54386.2022.9957568
Motion Correction Using Deep Learning Neural Networks - Effects of Data Representation
Zaydullin, R., Bharath, A.A., Grisan, E., Christensen-Jeffries, K., Bai, W. and Tang, M-X. (2022). Motion Correction Using Deep Learning Neural Networks - Effects of Data Representation. 2022 IEEE International Ultrasonics Symposium (IUS). Venice, Italy 10 - 13 Oct 2022 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ius54386.2022.9958903
Computer-Aided Imaging Analysis of Probe-Based Confocal Laser Endomicroscopy With Molecular Labeling and Gene Expression Identifies Markers of Response to Biological Therapy in IBD Patients: The Endo-Omics Study
Iacucci, M., Jeffery, L., Acharjee, A., Grisan, E., Buda, A., Nardone, O.M., Smith, S.C.L., Labarile, N., Zardo, D., Ungar, B., Hunter, S., Mao, R., Cannatelli,R., Shivaji, U.N., Parigi, T.L., Reynolds, G.M., Gkoutos, G.V. and Ghosh, S. (2022). Computer-Aided Imaging Analysis of Probe-Based Confocal Laser Endomicroscopy With Molecular Labeling and Gene Expression Identifies Markers of Response to Biological Therapy in IBD Patients: The Endo-Omics Study. Inflammatory Bowel Diseases. 2022 (izac233), pp. 1-12. https://doi.org/0.1093/ibd/izac233
A Virtual Chromoendoscopy Artificial Intelligence system to detect endoscopic and histologic activity/remission and predict clinical outcomes in Ulcerative Colitis
Iacucci, M, Cannatelli, R, Parigi,T.L., Nardone, O.M., Tontini, G.E., Labarile, N, Buda, A., Rimondi, A., Bazarova, A., Bisschops, R., del Amor, R., Meseguer, P., Naranjo, V., PICaSSO Group, Ghosh, S. and Grisan, E. (2022). A Virtual Chromoendoscopy Artificial Intelligence system to detect endoscopic and histologic activity/remission and predict clinical outcomes in Ulcerative Colitis. Endoscopy. https://doi.org/10.1055/a-1960-3645
Accelerating colloidal quantum dot innovation with algorithms and automation
Howes, P., Munyebvu, N., Lane, E. and Grisan, E. (2022). Accelerating colloidal quantum dot innovation with algorithms and automation. Materials Advances. https://doi.org/10.1039/d2ma00468b
Constrained Multiple Instance Learning for Ulcerative Colitis prediction using Histological Images
del Amor, R., Meseguera, P., Parigi, T.L., Villanacci, V., Colomer, A., Launet, L., Bazarova, A., Tontini, G.E., Bisschops, R., de Hertogh, G., Ferraz, J.G., Götz, M., Gui, Xi., Hayeem, B., Lazarev, M., Panaccione, R., Parra-Blanco, A., Bhandari, P., Pastorelli, L., Rath, T., Synnøve Røyset, E., Vieth, M., Zardo, D., Grisan, E., Ghosh, S., Iacucci, M. and Naranjo, V. (2022). Constrained Multiple Instance Learning for Ulcerative Colitis prediction using Histological Images. Computer methods and programs in biomedicine. 224, p. 107012. https://doi.org/10.1016/j.cmpb.2022.107012
A Virtual Chromoendoscopy Artificial Intelligence System To Detect Endoscopic And Histologic Remission In Ulcerative Colitis
Iacucci M., Cannatelli, R., Parigi, T.L., Buda, A., Labarile, N., Nardone, O. M., Tontini, G. E., Rimondi, A., Bazarova, A., Bhandari, P., Bisschops, R., De Hertogh, G., Del Amor, R., Ferraz, J. G., Goetz, M., Gui, S. X., Hayee, B., Kiesslich, R., Lazarev, M., Naranjo, V., Panaccione, R., Parra-Blanco, A., Pastorelli, L., Rath, T., Røyset, E. S., Vieth, M., Villanacci, V., Zardo, D., Ghosh, S. and Grisan, E. (2022). A Virtual Chromoendoscopy Artificial Intelligence System To Detect Endoscopic And Histologic Remission In Ulcerative Colitis. Digestive Disease Week - DDW 2022. San Diego (CA) 21 - 24 May 2022
A Virtual Chromoendoscopy Artificial Intelligence System To Detect Endoscopic And Histologic Remission In Ulcerative Colitis
Iacucci, M., Cannatelli, R., Parigi, T.L., Buda, A., Labarile, N., Nardone, O.M., Tontini, G.E., Rimondi, A., Bazarova, A., Bhandari, P., Bisschops, R., De Hertogh, G., del Amor, R., Ferraz, J.G, Goetz, M., Gui, X., Hayee, B., Kiesslich, R., Lazarev, M., Naranjo, V., Panaccione, R., Parra-Blanco, A., Pastorelli, L., Rath, T., Røyset, E.S, Vieth, M., Villanacci, V., Zardo, D., Ghosh, S. and Grisan, E. (2022). A Virtual Chromoendoscopy Artificial Intelligence System To Detect Endoscopic And Histologic Remission In Ulcerative Colitis. ESGE Days 2022. 28 Apr 2022 Georg Thieme Verlag KG. https://doi.org/10.1055/s-0042-1744593
A Deep Graph Cut Model for 3D Brain Tumor Segmentation
De, A., Tiwari, M., Grisan, E. and Chowdhury, A.S. (2022). A Deep Graph Cut Model for 3D Brain Tumor Segmentation. 44th International Engineering in Medicine and Biology Conference (EMBC 2022). Glasgow (UK) 11 - 15 Jul 2022 Institute of Electrical and Electronics Engineers (IEEE).
OP16 The first virtual chromoendoscopy artificial intelligence system to detect endoscopic and histologic remission in Ulcerative Colitis
Iacucci, M, Cannatelli, R, Parigi, TL, Buda, A, Labarile, N, Nardone, OM, Tontini, GE, Rimondi, A, Bazarova, A, Bhandari, P, Bisschops, R, De Hertogh, G, Del Amor, R, Ferraz, JG, Goetz, M, Gui, X, Hayee, B, Kiesslich, R, Lazarev, M, Naranjo, V, Panaccione, R, Parra-Blanco, A, Pastorelli, L, Rath, T, Røyset, ES, Vieth, M, Villanacci, V, Zardo, D, Ghosh, S and Grisan, E. (2022). OP16 The first virtual chromoendoscopy artificial intelligence system to detect endoscopic and histologic remission in Ulcerative Colitis. 17th Congress of ECCO - European Crohn’s and Colitis Organisation. 16 - 19 Feb 2022 Oxford University Press (OUP). https://doi.org/10.1093/ecco-jcc/jjab232.015
OP15 A new simplified histology artificial intelligence system for accurate assessment of remission in Ulcerative Colitis
Villanacci, V, Parigi, TL, Del Amor, R, Mesguer Esbrì, P, Gui, X, Bazarova, A, Bhandari, P, Bisschops, R, Danese, S, De Hertogh, G, G Ferraz, JG, Götz, M, Grisan, E., Hayee, B, Kiesslich, R, Lazarev, M, Mandelli, G, Monica, MAT, Panaccione, R, Parra-Blanco, A, Pastorelli, L, Rath, T, Røyset, ES, Shivaji, U, Tontini, GE, Vieth, M, Zardo, D, Ghosh, S, Naranjo, V and Iacucci, M (2022). OP15 A new simplified histology artificial intelligence system for accurate assessment of remission in Ulcerative Colitis. 17th Congress of ECCO - European Crohn’s and Colitis Organisation. 16 - 19 Feb 2022 Oxford University Press (OUP). https://doi.org/10.1093/ecco-jcc/jjab232.014
An Adaptive Registration Algorithm for Zebrafish Larval Brain Images
Deb, S, Tiso, N, Grisan, E. and Chowdhury, A.S. (2022). An Adaptive Registration Algorithm for Zebrafish Larval Brain Images. Computer methods and programs in biomedicine. 216, p. 106658. https://doi.org/10.1016/j.cmpb.2022.106658
PICaSSO Histologic Remission Index (PHRI) in Ulcerative Colitis – Development of a Novel Simplified Histological Score for Monitoring Mucosal Healing and Predicting Clinical Outcomes and its Applicability in an Artificial Intelligence System
Gui, X., Bazarova, A., del Amor, R., Vieth, M., de Hertogh, G., Villanacci, V., Zardo, D., Parigi, T. L., Røyset, E., Shivaji, U., Monica, M. A.T., Mandelli, G., Bhandari, P., Danese, S., Ferraz, J., Hayee, B., Lazarev, M., Parra-Blanco, A., Pastorelli, L., Panaccione, R., Rath, T., Tontini, G.E., Ralf, H., Bisschops, R., Grisan, E., Naranjo, V., Ghosh, S. and Iacucci, M. (2022). PICaSSO Histologic Remission Index (PHRI) in Ulcerative Colitis – Development of a Novel Simplified Histological Score for Monitoring Mucosal Healing and Predicting Clinical Outcomes and its Applicability in an Artificial Intelligence System. Gut. https://doi.org/10.1136/gutjnl-2021-326376
The primary visual cortex of Cetartiodactyls: organization, cytoarchitectonics and comparison with perissodactyls and primates.
Graïc, J., Peruffo, A., Corain, L., Finos, L., Grisan, E. and Cozzi, B. (2021). The primary visual cortex of Cetartiodactyls: organization, cytoarchitectonics and comparison with perissodactyls and primates. Brain structure & function. 227, p. 1195–1225. https://doi.org/10.1007/s00429-021-02392-8
Deep learning for the prediction of treatment response in depression
Squarcina, L., Villa, F.M., Nobile, M., Grisan, E. and Brambilla, P. (2021). Deep learning for the prediction of treatment response in depression. Journal of Affective Disorders. 281, pp. 618-622. https://doi.org/10.1016/j.jad.2020.11.104
Response to Biologics in Ibd Patients Assessed by Computerized Image Analysis of Probe Based Confocal Laser Endomicroscopy With Molecular Labeling
Iacucci, M, Grisan, E, Labarile, N, Nardone, OM, Smith, SCL, Jeffery, L, Cannatelli, R, Ghosh, S and Buda, A (2021). Response to Biologics in Ibd Patients Assessed by Computerized Image Analysis of Probe Based Confocal Laser Endomicroscopy With Molecular Labeling. ESGE Days 2021. Virtual 25 - 27 Mar 2021 Georg Thieme Verlag KG. https://doi.org/10.1055/s-0041-1724759
Deep-Learning Estimation of Perfusion Kinetic Parameters in Contrast-Enhanced Ultrasound Imaging
Grisan, E., Harput, S., Raffeiner, B., Fiocco, U. and Stramare, R. (2021). Deep-Learning Estimation of Perfusion Kinetic Parameters in Contrast-Enhanced Ultrasound Imaging. IEEE International Symposium on Biomedical Imaging - IEEE ISBI. Nice 13 - 16 Apr 2021 Institute of Electrical and Electronics Engineers (IEEE).
The claustrum of the sheep and its connections to the visual cortex
Pirone, A., Graïc, J., Grisan, E. and Cozzi, B. (2020). The claustrum of the sheep and its connections to the visual cortex. Journal of Anatomy. 238 (1), pp. 1-12. https://doi.org/10.1111/joa.13302
Is machine learning prediction of Aβ positivity consistent? An assessment of multiple datasets
Grecchi, E., Grisan, E., Buckley, C. and Wolber, J. (2020). Is machine learning prediction of Aβ positivity consistent? An assessment of multiple datasets. Wiley. https://doi.org/10.1002/alz.040990
Single- and Multi-Distribution Dimensionality Reduction Approaches for a Better Data Structure Capturing
Hajderanj, L., Chen, D., Grisan, E. and Dudley-McEvoy, S (2020). Single- and Multi-Distribution Dimensionality Reduction Approaches for a Better Data Structure Capturing. IEEE Access. 8, pp. 207141 - 207155. https://doi.org/10.1109/ACCESS.2020.3038460
Multi-aspect testing and ranking inference to quantify dimorphism in the cytoarchitecture of cerebellum of male, female and intersex individuals: a model applied to bovine brains.
Corain, L., Grisan, E., Graïc, J., Carvajal-Schiaffino, R., Cozzi, B. and Peruffo, A. (2020). Multi-aspect testing and ranking inference to quantify dimorphism in the cytoarchitecture of cerebellum of male, female and intersex individuals: a model applied to bovine brains. Brain structure & function. https://doi.org/10.1007/s00429-020-02147-x
Preface to: EndoCV2020Computer Vision in Endoscopy
Ali, S, Daul, C, Rittscher, J, Stoyanov, D and Grisan, E (2020). Preface to: EndoCV2020Computer Vision in Endoscopy. CEUR Workshop Proceedings. 2595.
An assay system to evaluate riboflavin/UV-A corneal phototherapy efficacy in a porcine corneal organ culture model
Perazzi, A, Gomiero, C, Corain, Livio, Iacopetti, Ilaria, Grisan, Enrico, Lombardo, Marco, Lombardo, Giuseppe, Salvalaio, Gianni, Contin, Roberta, Patruno, Marco, Martinello, Tiziana and Peruffo, Antonella (2020). An assay system to evaluate riboflavin/UV-A corneal phototherapy efficacy in a porcine corneal organ culture model. Animals. 10, pp. 1-16. https://doi.org/10.3390/ani10040730
An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy
Ali, S., Zhou, F., Braden, B., Bailey, A., Yang, S., Cheng, G., Zhang, P., Li, X., Kayser, M., Soberanis-Mukul, R., Albarqouni, S., Wang, X., Wang, C., Watanabe, S., Oksuz, I., Ning, Q., Yang, S., Khan, M.A., Gao, X., Realdon, S., Loshchenov, M., Schnabel, J., East, J., Wagnieres, G., Loschenov, V., Grisan, E., Daul, C., Blondel, W. and Rittscher, J. (2020). An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Scientific Reports. 10, p. 2748. https://doi.org/10.1038/s41598-020-59413-5
In-vivo Barretts esophagus digital pathology stage classification through feature enhancement of confocal laser endomicroscopy
Ghatwary, N, Ahmed, A, Grisan, E, Jalab, H, Bidaut, L and Ye, X (2019). In-vivo Barretts esophagus digital pathology stage classification through feature enhancement of confocal laser endomicroscopy. J Med Imaging (Bellingham). 6 (1). https://doi.org/https://www.doi.org/10.1117/1.JMI.6.1.014502
Real-time diameter of the fetal aorta from ultrasound
Savioli, Nicolò, Grisan, Enrico, Visentin, Silvia, Cosmi, Erich, Montana, Giovanni and Lamata, Pablo (2019). Real-time diameter of the fetal aorta from ultrasound. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04646-3
Does Quantification of Carotid Plaque Surface Irregularities Better Detect Symptomatic Plaques Compared to the Subjective Classification?
Rafailidis, V., Chryssogonidis, I., Grisan, E., Xerras, C., Cheimariotis, G-A., Tegos, T., Rafailidis, D., Sidhu, P. and Charitanti-Kouridou, A. (2019). Does Quantification of Carotid Plaque Surface Irregularities Better Detect Symptomatic Plaques Compared to the Subjective Classification? Journal of Ultrasound in Medicine. 38 (12), pp. 3163-3171. https://doi.org/10.1002/jum.15017
An ultrasonographic multiparametric carotid plaque risk index associated with cerebrovascular symptomatology: A study comparing color Doppler imaging and contrast-enhanced ultrasonography
Rafailidis, V., Chryssogonidis, I., Xerras, C., Grisan, E., Cheimariotis, G-A., Tegos, T., Rafailidis, P.S., Sidhu, P.S. and Charitanti-Kouridou, A. (2019). An ultrasonographic multiparametric carotid plaque risk index associated with cerebrovascular symptomatology: A study comparing color Doppler imaging and contrast-enhanced ultrasonography. American Journal of Neuroradiology. 40 (6), pp. 1022-1028. https://doi.org/10.3174/ajnr.A6056
The motor cortex of the sheep: laminar organization, projections and diffusion tensor imaging of the intracranial pyramidal and extrapyramidal tracts
Peruffo, A., Corain, L., Bombardi, C., Centelleghe, C., Grisan, E., Graïc, J-M, Bontempi, P., Grandis, A. and Cozzi, B. (2019). The motor cortex of the sheep: laminar organization, projections and diffusion tensor imaging of the intracranial pyramidal and extrapyramidal tracts. Brain Structure and Function. 224 (5), pp. 1933-1946. https://doi.org/10.1007/s00429-019-01885-x
Building a reduced dictionary of relevant perfusion patterns from CEUS data for the classification of testis lesions
Favaron, T., Huang, D.Y., Christensen-Jeffries, K., Eckersley, R., Sidhu, P.S. and Grisan, E. (2019). Building a reduced dictionary of relevant perfusion patterns from CEUS data for the classification of testis lesions. 2019 IEEE 16th International Symposium on Biomedical Imaging. Venice, Italy 08 - 11 Apr 2019 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ISBI.2019.8759528
Deep Convolutional Neural Network for Survival Estimation of Amyotrophic Lateral Sclerosis patients
Grisan, E., Zandon`a, A. and Di Camillo, B. (2019). Deep Convolutional Neural Network for Survival Estimation of Amyotrophic Lateral Sclerosis patients. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium 24 - 26 Apr 2019 i6doc.
Prediction of Adverse Glycemic Events from Continuous Glucose Monitoring Signal
Gadaleta, M., Facchinetti, A., Grisan, E. and Rossi, M. (2019). Prediction of Adverse Glycemic Events from Continuous Glucose Monitoring Signal. IEEE Journal of Biomedical and Health Informatics. 23 (2). https://doi.org/10.1109/JBHI.2018.2823763
Sparse Image Reconstruction for Contrast Enhanced Cardiac Ultrasound using Diverging Waves
Stanziola, A., Toulemonde, M., Papadopoulou, V., Corbett, R., Duncan, N., Grisan, E. and Tang, M-X. (2019). Sparse Image Reconstruction for Contrast Enhanced Cardiac Ultrasound using Diverging Waves. IEEE International Ultrasonics Symposium 2019. Glasgow 09 2009 - 06 Oct 2019 Institute of Electrical and Electronics Engineers (IEEE).
Super resolution ultrasound image filtering with machine learning to reduce the localization error
Harput, S., Fong, L.H., Stanziola, A., Zhang, G., Toulemonde, M., Zhou, J., Christensen-Jeffries, K., Brown, J., Eckersley, R., Grisan, E., Dunsby, C. and Tang, M. (2019). Super resolution ultrasound image filtering with machine learning to reduce the localization error. IEEE International Ultrasonics Symposium 2019. Glasgow 09 2009 - 06 Oct 2019 Institute of Electrical and Electronics Engineers (IEEE).
Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta Analysis with Ultrasound
Savioli, N., Visentin, S., Cosmi, E., Grisan, E., Lamata, P. and Montana, G. (2018). Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta Analysis with Ultrasound. Artificial Neural Networks and Machine Learning – ICANN 2018. Rhodes, Greece 04 - 07 Oct 2018 Springer. https://doi.org/10.1007/978-3-030-01421-6_15
Quantitative imaging by pixel-based contrast-enhanced ultrasound reveals a linear relationship between synovial vascular perfusion and the recruitment of pathogenic IL-17A-F+IL-23+ CD161+ CD4+ T helper cells in psoriatic arthritis joints
Fiocco, U, Stramare, R, Martini, V, Coran, A, Caso, F, Costa, L, Felicetti, M, Rizzo, G, Tonietto, M, Scanu, A, Oliviero, F, Raffeiner, B, Vezzù, M, Lunardi, F, Scarpa, R, Sacerdoti, D, Rubaltelli, L, Punzi, L, Doria, A and Grisan, E (2017). Quantitative imaging by pixel-based contrast-enhanced ultrasound reveals a linear relationship between synovial vascular perfusion and the recruitment of pathogenic IL-17A-F+IL-23+ CD161+ CD4+ T helper cells in psoriatic arthritis joints. Clinical Rheumatology. 36 (2), pp. 391-399. https://doi.org/10.1007/s10067-016-3500-x
Boosting the Battery Life of Wearables for Health Monitoring Through the Compression of Biosignals
Hooshmand, M, Zordan, D, Del Testa, D, Grisan, E and Rossi, M (2017). Boosting the Battery Life of Wearables for Health Monitoring Through the Compression of Biosignals. IEEE Internet of Things Journal. 4, pp. 1647-1662. https://doi.org/10.1109/JIOT.2017.2689164
Detection of a slow-flow component in contrast-enhanced ultrasound of the synovia for the differential diagnosis of arthritis
Rizzo, G, Tonietto, M, Castellaro, M, Raffeiner, B, Coran, A, Fiocco, U, Stramare, R and Grisan, E (2017). Detection of a slow-flow component in contrast-enhanced ultrasound of the synovia for the differential diagnosis of arthritis. SPIE Medical Imaging. Orlando, FL, USA 11 - 16 Feb 2017 SPIE. https://doi.org/10.1117/12.2250818
Improving the quantification of contrast enhanced ultrasound using a Bayesian approach
Rizzo, G, Tonietto, M, Castellaro, M, Raffeiner, B, Coran, A, Fiocco, U, Stramare, R and Grisan, E (2017). Improving the quantification of contrast enhanced ultrasound using a Bayesian approach. SPIE Medical Imaging. Orlando, FL , USA 16 2016 - 11 Feb 2017 SPIE. https://doi.org/10.1117/12.2250195
Superpixel-based classification of gastric chromoendoscopy images
Boschetto, D and Grisan, E (2017). Superpixel-based classification of gastric chromoendoscopy images. SPIE Medical Imaging. Orlando, FL, USA 11 - 16 Feb 2017 SPIE. https://doi.org/10.1117/12.2254187
Boosted learned kernels for data-driven vesselness measure
Grisan, E (2017). Boosted learned kernels for data-driven vesselness measure. Proceedings Volume 10137, Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging; 101370Z (2017). Orlando, FL, USA 11 - 16 Feb 2017 SPIE. https://doi.org/10.1117/12.2250370
Cortical Thickness variability in Multiple Sclerosis: The role of lesion segmentation and filling
Palombit, A, Castellaro, M, Calabrese, M, Romualdi, C, Pizzini, FB, Montemezzi, S, Grisan, E and Bertoldo, A (2017). Cortical Thickness variability in Multiple Sclerosis: The role of lesion segmentation and filling. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, VIC, Australia 18 - 21 Apr 2017 pp. 792-795 https://doi.org/10.1109/ISBI.2017.7950637
From macro to nano: Linking quantitative CEUS perfusion parameters to CD4+ T cells subtypes in spondyloarthtitis
Grisan, E, Rizzo, G, Tonietto, M, Coran, A, Raffeiner, B, Scanu, A, Martini, V, Stramare, R and Fiocco, U (2017). From macro to nano: Linking quantitative CEUS perfusion parameters to CD4+ T cells subtypes in spondyloarthtitis. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, VIC, Australia 17 - 21 Apr 2017 Institute of Electrical and Electronics Engineers (IEEE). pp. 899-902 https://doi.org/10.1109/ISBI.2017.7950661
Grade and location of power doppler are predictive of damage progression in rheumatoid arthritis patients in clinical remission by anti-tumour necrosis factor α
Raffeiner, B, Grisan, E, Botsios, C, Stramare, R, Rizzo, G, Bernardi, L, Punzi, L, Ometto, F and Doria, A (2017). Grade and location of power doppler are predictive of damage progression in rheumatoid arthritis patients in clinical remission by anti-tumour necrosis factor α. Rheumatology (United Kingdom). 56, pp. 1320-1325. https://doi.org/10.1093/rheumatology/kex084
Bayesian Quantification of Contrast-Enhanced Ultrasound Images with Adaptive Inclusion of an Irreversible Component
Rizzo, G, Tonietto, M, Castellaro, M, Raffeiner, B, Coran, A, Fiocco, U, Stramare, R and Grisan, E (2017). Bayesian Quantification of Contrast-Enhanced Ultrasound Images with Adaptive Inclusion of an Irreversible Component. IEEE Transactions on Medical Imaging. 36, pp. 1027-1036. https://doi.org/10.1109/TMI.2016.2637698
Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration
Facchinello, N, Tarifeño-Saldivia, E, Grisan, E, Schiavone, M, Peron, M, Mongera, A, Ek, O, Schmitner, N, Meyer, D, Peers, B, Tiso, N and Argenton, F (2017). Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration. Scientific Reports. 7. https://doi.org/10.1038/s41598-017-09867-x
Growth abnormalities of fetuses and infants
Cosmi, E, Grisan, E, Fanos, V, Rizzo, G, Sivanandam, S and Visentin, S (2017). Growth abnormalities of fetuses and infants. BioMed Research International. 2017. https://doi.org/https://www.doi.org/10.1155/2017/3191308
A possible new approach in the prediction of late gestational hypertension: The role of the fetal aortic intima-media thickness
Visentin, S, Londero, AP, Camerin, M, Grisan, E and Cosmi, E (2017). A possible new approach in the prediction of late gestational hypertension: The role of the fetal aortic intima-media thickness. Medicine (United States). 96. https://doi.org/https://www.doi.org/10.1097/MD.0000000000005515
Automatic classification of small bowel mucosa alterations in celiac disease for confocal laser endomicroscopy
Boschetto, D, Di Claudio, G, Mirzaei, H, Leong, R and Grisan, E (2016). Automatic classification of small bowel mucosa alterations in celiac disease for confocal laser endomicroscopy. Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging. San Diego, United States 27 Feb - 03 Mar 2016 SPIE. https://doi.org/10.1117/12.2217183
Automatic classification of endoscopic images for premalignant conditions of the esophagus
Boschetto, D, Gambaretto, G and Grisan, E (2016). Automatic classification of endoscopic images for premalignant conditions of the esophagus. Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging. San Diego, United States 27 Feb - 03 Mar 2016 https://doi.org/10.1117/12.2216826
Superpixel-based automatic segmentation of villi in confocal endomicroscopy
Boschetto, D, Mirzaei, H, Leong, RWL and Grisan, E (2016). Superpixel-based automatic segmentation of villi in confocal endomicroscopy. 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). Las Vegas, NV, USA 24 - 27 Feb 2016 pp. 168-171 https://doi.org/10.1109/BHI.2016.7455861
Quantification of kidneys from 3D ultrasound in pediatric hydronephrosis
Cerrolaza, J.J., Grisan, E., Safdar, N., Myers, E., Jago, J., Peters, C.A. and Linguraru, M.G. (2015). Quantification of kidneys from 3D ultrasound in pediatric hydronephrosis. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/embc.2015.7318324