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Abstract
Objective To employ Artificial Intelligence to model, predict and simulate the amyotrophic lateral sclerosis (ALS) progres-
sion over time in terms of variable interactions, functional impairments, and survival.
Methods We employed demographic and clinical variables, including functional scores and the utilisation of support inter-
ventions, of 3940 ALS patients from four Italian and two Israeli registers to develop a new approach based on Dynamic 
Bayesian Networks (DBNs) that models the ALS evolution over time, in two distinct scenarios of variable availability. The 
method allows to simulate patients’ disease trajectories and predict the probability of functional impairment and survival 
at different time points.
Results DBNs explicitly represent the relationships between the variables and the pathways along which they influence the 
disease progression. Several notable inter-dependencies were identified and validated by comparison with literature. Moreo-
ver, the implemented tool allows the assessment of the effect of different markers on the disease course, reproducing the 
probabilistically expected clinical progressions. The tool shows high concordance in terms of predicted and real prognosis, 
assessed as time to functional impairments and survival (integral of the AU-ROC in the first 36 months between 0.80–0.93 
and 0.84–0.89 for the two scenarios, respectively).
Conclusions Provided only with measurements commonly collected during the first visit, our models can predict time to 
the loss of independence in walking, breathing, swallowing, communicating, and survival and it can be used to generate in 
silico patient cohorts with specific characteristics. Our tool provides a comprehensive framework to support physicians in 
treatment planning and clinical decision-making.

Keywords Amyotrophic lateral sclerosis · Clinical trajectories · Prognosis modelling · Population model · Artificial 
intelligence · Dynamic Bayesian Networks

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegen-
erative disorder causing progressive paralysis and usually 
leading to death within 2–4 years from symptom onset due 
to respiratory failure [1]. Despite relative uniformity during 
late disease stages, the phenotype at onset and earlier stages 
is highly variable [2]. Region of onset, relative involvement 
of upper or lower motor neurons, and progression rate can 
differ substantially between patients, even in those with a 
similar genetic aetiology [3]. Moreover, a variety of non-
motor symptoms can be associated with motor impairment, 
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with frontotemporal dementia (FTD) being the most com-
mon [4].

In addition to progressive disability, people with ALS 
and their caregivers are faced with uncertainty regarding 
the sequence and timing of future impairments. Clinicians 
also need tools to predict the timing of future interventions, 
and accurate predictive models will be critical in improving 
the efficiency of therapeutic trials. Finally, a stratification 
of ALS patients based on their pattern of progression could 
give hints on different mechanisms acting in disease patho-
genesis and help clinical trial design.

Artificial intelligence (AI) and machine learning methods 
can be used to describe the disease process and to make 
predictions that are applicable to a wide range of patients, 
as well as to develop personalised approaches to care tai-
lored to the patients’ characteristics. So far, different predic-
tive models of ALS progression have been developed, with 
the main goals being the prediction of future progression 
[5–10], and stratification of the patients into meaningful 
subgroups [11–13]. With respect to the predictive models, 
among the main considered outcomes there are ALS pro-
gression, change in weight, respiratory insufficiency, and 
survival [7]. Many of these models were developed using 
data from the Pooled Resource Open-Access ALS Clinical 
Trials (PRO-ACT) [14]. On one hand, PRO-ACT represents 
an invaluable resource for research studies on ALS, since its 
large sample size and visits’ frequency guarantee statistically 
significant analyses and allows a good disease progression 
characterization. Nonetheless, clinical trial cohorts are not 
fully representative of the general ALS population and their 
follow-up is limited to trials’ duration [15].

To overcome this limitation, some models developed on 
PRO-ACT were validated on external clinical cohorts, as in 
Taylor et al. [6]. Other models were directly developed on 
clinical cohorts [8, 16], or clinical datasets were integrated 
with the PRO-ACT dataset [12, 17].

From a general point of view, however, practical use of AI 
in health management is still limited. This may be due to a 
number of reasons such as lack of model interpretability and 
usability in different scenarios. For example, while being 
useful for predicting single survival or intervention end-
points (or a related risk score), prognostic models available 
in the literature have a limited ability to give a global vision 
of the disease evolution over time, including the progression 
of different intercorrelated variables and the management of 
patients' clinical heterogeneity.

Focusing more specifically on the needs related to 
this disease, in ALS patients need support to deal with 
an increasing need of care at home, alternated to periods 
in hospitals. Moreover, they experience a constant uncer-
tainty regarding the timing of the impairments associated 
with the disease and face a considerable psychological 
and economic burden that also involves their caregivers. 

Clinicians, on the other hand, need tools able to support 
them in a multifactorial view of disease progression able 
to highlight the interplay of numerous multidimensional 
factors.

Based on these considerations, the aim of this work was 
to develop a model of disease progression able to predict 
the ALS main functional impairments in walking/self-
care, breathing, swallowing and communicating, and, in 
addition, patients’ survival, based on the dynamic Bayes-
ian network (DBN) approach. DBNs allow to generate, on 
the one hand, a graph showing how the variables influence 
each other over time and, on the other, the trajectories 
of progression of the disease, which show how the prob-
ability of death or functional impairment in the 4 domains 
mentioned above varies over time. The model, which was 
developed employing data from different international 
clinical centres, can be used to simulate ALS progression 
starting from the individual data of a specific patient at 
a specific visit, thus allowing to follow the probabilistic 
evolution of the disease in a population with the same 
characteristics. It also allows generating and comparing in 
silico cohorts of patients characterised by specific pheno-
types, e.g., bulbar vs. spinal onset, allowing the visualisa-
tion of different temporal phenotypes of disease evolution 
and the investigation of the effect of specific risk factors 
on the progression.

Materials and methods

This work was performed in the context of the CompALS 
project, an Italian-Israeli collaboration. The study was 
approved by the ethical committees of the coordinating 
and participating centres. Written informed consent to par-
ticipate in the study was obtained from all the patients or 
their legal representatives. The databases were anonymised 
according to the privacy protection legislation of Italy and 
Israel. The data used for training and validation of algo-
rithms in this study are available upon reasonable request to 
the different centres involved in the study.

Participants

ALS patients were recruited from two population-based reg-
isters, the Piemonte and Valle d'Aosta ALS register (PAR-
ALS) [18] and the Emilia-Romagna ALS register (ERRALS) 
[19], and four tertiary ALS clinics: Tel Aviv Medical Center, 
Hadassah University Hospital Medical Center (Jerusalem), 
Nemo Clinical Center (Milan), and Salvatore Maugeri Foun-
dation (Milan). ALS diagnosis was assessed according to the 
El Escorial revised criteria [20].
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Data collection

For each patient, several demographic and clinical character-
istics were considered. To depict different cases of use based 
on the available clinical variables, we aggregated the avail-
able demographic and clinical information into two datasets, 
and developed two distinct versions of the tool.

The first dataset (named “ITIS” in the following), 
includes the more frequently available prognostic variables 
from all the six Italian and Israeli data sources: sex, onset 
site, age at onset, diagnostic delay, and the revised ALS 
Functional Rating Scale (ALSFRS-R) scores [21], together 
with the survival information (time from ALS onset to either 
tracheostomy/death, or censoring information). This dataset 
represents a sort of basic scenario.

The second dataset (named “IT” in the following), 
comprises only data from the Italian registers/centres and 
includes a wider set of variables, thus representing a more 
advanced scenario with a higher level of detail on patient’s 
characterization. With respect to ITIS, it additionally 
includes features recognised as potentially prognostic in 
the scientific literature, such as genetic mutations (genes 
C9orf72, FUS, SOD1 and TARDBP), ALS family his-
tory, presence of frontotemporal dementia (FTD) detected 
through neuropsychological testing, premorbid body mass 
index (BMI) and BMI at diagnosis, forced vital capacity 
(FVC) at diagnosis, and the utilisation of respiratory (non-
invasive ventilation, NIV) and nutritional (percutaneous 
endoscopic gastrostomy, PEG) supports.

In both datasets, starting from the visit times we derived 
two additional temporal variables: time between visits, TBV, 
and time since onset, TSO. These variables allow to account 
for different observation windows and different data sam-
pling time among subjects, as well as to explicitly model 
the variation of the visit frequency as the disease progresses.

For both the ITIS and the IT datasets, the tool was devel-
oped on a dataset (named training set in the following, 
according to the machine learning habit) and was validated 
on a completely independent corresponding set of data 
(named test set in the following).

Functional impairment assessment

To model the disease progression in terms of subjects’ func-
tional impairments in walking/self-care, breathing, swal-
lowing and communicating, we converted the ALSFRS-R 
scores into the Milano-Torino staging (MiToS) system [22], 
obtaining 4 dynamic variables that switch from 0 to 1 when 
a specific functional domain is impaired. These four MiToS 
stages were used in the model as functional outcomes to 
quantitatively characterise the evolution of the disease over 
time, together with the survival. For further considerations 

on the ALS staging systems see Section “1. ALS staging 
systems” in the Supplementary Information.

Dynamic Bayesian network model

As a modelling technique, we used the dynamic Bayesian 
networks (DBNs) [23]. DBNs are computational models that 
encode the conditional dependence relationships among the 
variables of a multivariate dataset over time. They provide 
an explicit representation of the variable set and their inter-
dependencies, as obtained from clinical data and domain 
knowledge: graphically, they are represented as directed 
acyclic graphs with nodes representing the variables, and 
directed edges representing the conditional dependence over 
subsequent time steps of a node (child) from one or more 
others (parents). DBNs are well suited for describing the 
evolution of diseases [24–26], since they provide an explicit 
representation of the variable set and their inter-dependen-
cies, as well as the means to learn not only from the data 
but also from domain literature and expert knowledge. In 
the learning phase, a DBN uses the entire sequence of visits 
of the training set’s patients. Specifically, by looking at all 
the couples of consecutive visits at time (t − 1) and (t) for 
all the training patients, the DBN computes the conditional 
probability of each variable at time (t) given the values of 
its parents at time (t − 1). Once a DBN model is learned, it 
can be used to interpret the relationships among variables, to 
predict and simulate disease progression in in silico popula-
tions or more specific sub-cohorts of patients, and to evalu-
ate the effects of specific risk-factors on disease prognosis.

Here, stemming from our preliminary methodological 
work on the PRO-ACT database [27], we learned the DBNs 
in turn from the ITIS and IT training sets using bnstruct 
[28], an R package that performs structure and parameter 
learning on discrete/categorical data over a discrete number 
of time steps. First, we discretised the continuous variables 
according to their distribution quantiles in the training sets 
(for the thresholds used for the quantisation, see Section 
“2. Datasets” in the Supplementary Information). Then, we 
learned the DBNs on the training sets using the Max–Min 
Hill-Climbing algorithm (MMHC) [29] with the Bayesian 
Information Criterion (BIC) as score function, followed by 
a Maximum A Posteriori (MAP) estimation. Since missing 
data were present in our datasets, we used the available cases 
framework without the need for data imputation. We also 
applied some constraints to the network structure to codify 
the domain knowledge: clinically or biologically nonsensi-
cal relations among variables were forbidden, such as, for 
instance, the dependence of medical centre on patients' sex, 
while other dependencies were enforced, such as the depend-
encies of the MiToS variables and the survival from the time 
since onset, in accordance with the progressive nature of the 
disease over time [5, 12, 30].
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For more details on the DBNs and a complete descrip-
tion of the rules set in the learning phase, see Section “3. 
Methods” in the Supplementary Information.

Patient simulation

The trained ALS DBNs can be used to simulate ALS pro-
gression starting from the patients’ data at a specific visit, 
simulating the successive instants one at a time using the 
learned conditional dependencies. Since for a given node 
(variable) in the model in-going edges represent conditional 
probability dependencies from the values of its parents at 
the previous time-point, the state probability of the node 
at a certain next time-point (t) can be inferred using all the 
values of its parents at the previous time-point (t − 1). In 
this way, the ALS evolution can be step-by-step simulated 
and followed in terms of progression trajectories. It is worth 
highlighting that, when we run the model on the test set, a 
single starting time point is used for each subject (the first 
real available visit) and the system is let to evolve over time-
based solely on the learned model structure and parameters 
(i.e., without using any other time point of the test data). In 
the current implementation, the tool requires as a starting 
point a visit with all recorded values of the variables (in 
other words, no missing values are allowed in the starting 
point visit for the test set).

Model performance assessment

The simulation process also allows the validation of the 
DBN models. By comparing the simulated prognosis for 
each patient and the true disease progression, indeed, it 
is possible to assess the prediction accuracy of the learnt 
DBNs.

Specifically, the whole dynamic of ALS progression 
recorded in the training sets was used to learn the DBNs. 
Then, the evolution of the disease was simulated for the sub-
jects of each test set by setting the real first recorded con-
tact with the medical centre as the starting point and using 
the corresponding trained DBN to predict the progression, 
visit after visit, by sampling from the learned conditional 
probability distributions. Finally, we extracted from the so-
predicted follow-ups some endpoints of interest (namely, 
the 4 MiToS impairments and the survival). In general, if 
not already recorded at the starting point visits, the impair-
ment outcomes can occur at any time point of the simulated 
follow-up, while the occurrence of the simulated death event 
ends the simulation. We then compared the simulated time 
of occurrence for each outcome with the true one recorded 
in the patient’s real follow-up, to assess the prediction per-
formance. To obtain probability estimates of the predicted 
trajectories and the corresponding outcomes’ times, a total 
of 100 different simulations (or repetitions) were run for 

each patient, each one evolving for 40-time steps or until 
the simulated death was reached. Each new visit at time t 
obtained through the DBN is simulated at a temporal step 
from the previous one that is encoded in the time between 
visit (TBV) variable. As per the other variables, the value 
of TBV(t) is simulated by sampling from its real distribu-
tion in the corresponding training set based on the values 
of its parents at time t − 1. The choice of simulating up to 
40-time steps ensures that, for at least most of the cases, the 
simulated prognosis covers the mean follow-up of an ALS 
patient and that the survival endpoint is reached (a condition 
that stops the simulation).

Statistical analysis

The continuous variables are reported as means ± SD, 
the categorical variables as frequencies and proportions. 
Kruskal–Wallis and χ2 tests at 0.01 significance level were 
used for assessing the equality of the distributions of the 
continuous and the categorical variables, respectively, in the 
training and independent test sets.

We evaluated the prediction accuracy of the tool over 
time by employing for each clinical outcome, (that is, the 
4 MiToS impairments and the survival) two measures of 
predictive accuracy: discrimination and calibration.

Discrimination is the ability to discriminate between sub-
jects at different risks, i.e., that a patient who experiences a 
certain clinical outcome is assigned a higher risk value by 
the model than a patient who will experience that outcome 
later. The integrated area under (AU) the receiver operating 
characteristic (iAU-ROC) curve is the standard measure of 
discrimination since it can be shown that it is equal to the 
C-index where 1.0 implies perfect ranking based on risk 
and 0.5 implies no discrimination [31]. To first evaluate the 
accuracy of our model over time, we computed the AU-ROC 
for each clinical outcome at a 3-month step from the first 
visit up to 96 months. The 3-month step was chosen based 
on the mean time between visits of both the ITIS and the IT 
full datasets (3.5 and 3.3 months, respectively, see Tables 1 
and 2). We stopped the computation at 96 months since the 
percentage of deceased patients exceeded 95% in the follow-
ing year. We finally calculated, for each clinical outcome, the 
integral of the AU-ROCs computed at the 3-month steps up 
to 24, 36, and 96 months.

On the other hand, a good calibration is obtained if the 
model is able to predict future risk with accuracy such that 
the predicted probabilities closely agree with observed out-
comes, i.e., the model neither underestimates or overesti-
mates the risk. Discrimination does not affect calibration, 
that is, a model can perfectly rank subjects based on risk, 
yet being unable to predict realistic probabilities. Calibration 
performance was first qualitatively assessed in terms of the 
cumulative curve of occurrence of the real and predicted 
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outcomes. We also performed a quantitative analysis, by 
computing for each outcome the number of real and simu-
lated events (over all the repetition) occurring in the follow-
ing time slices: [0,6], (6,9], (9,12], (12,18], (18,24], (24,30], 
(30,36], (36,96] months since the disease onset. We then 
compared the expected and the observed frequencies on the 
different time slices using as a goodness-of-fit test the χ2 test.

All analyses were conducted and figures produced using 
R 4.1.0 (http:// www.r- proje ct. org/) running on Windows 
(Windows 10).

Table 1  Demographic and clinical features of the ALS population included in the ITIS dataset

Kruskal–Wallis and χ2 tests at 0.01 significance level were used for assessing the equality of the distributions of the continuous and the categori-
cal variables, respectively, in the training and independent test sets

Full dataset (n = 3940) Training set (n = 3221) Test set (n = 719) p value

Medical centre
 Emilia-Romagna 762 (19.3%) 605 (18.8%) 157 (21.8%)  < 0.01
 Maugeri Foundation 165 (4.2%) 126 (3.9%) 39 (5.4%)
 Nemo Clinical Centre 269 (6.8%) 223 (6.9%) 46 (6.4%)
 Hadassah Medical Centre 191 (4.8%) 186 (5.8%) 5 (0.7%)
 Tel Aviv Medical Centre 781 (19.8%) 633 (19.7%) 148 (20.6%)
 Piemonte and Valle d'Aosta 1772 (45.0%) 1448 (45.0%) 324 (45.1%)

Sex
 Female 1733 (44.0%) 1418 (44.0%) 315 (43.8%) 0.90
 Male 2205 (56.0%) 1801 (55.9%) 404 (56.2%)
 <NA> 2 (0.1%) 2 (0.1%) 0 (0.0%)

Onset site
 Bulbar 1180 (29.9%) 958 (29.7%) 222 (30.9%) 0.57
 Spinal 2742 (69.6%) 2245 (69.7%) 497 (69.1%)
 <NA> 18 (0.5%) 18 (0.6%) 0 (0.0%)

Age at onset (years) 62.7 ± 11.9 62.6 ± 12.1 62.9 ± 11.2 0.98
Diagnostic delay (months) 11.9 ± 12.3 12.0 ± 12.6 11.6 ± 10.8 0.89
Time between visits (months) 3.5 ± 5.0 3.5 ± 5.0 3.4 ± 5.0 0.73
Time since onset (months) 30.6 ± 27.8 30.9 ± 28.4 29.1 ± 25.0 0.26
MiToS walking/self-care
 Experiencing impairment 2712 (68.8%) 2188 (67.9%) 524 (72.9%)  < 0.01
 Not experiencing impairment 1228 (31.2%) 1033 (32.1%) 195 (27.1%)

MiToS swallowing
 Experiencing impairment 1252 (31.8%) 1007 (31.3%) 245 (34.1%) 0.10
 Not experiencing impairment 2688 (68.2%) 2214 (68.7%) 474 (65.9%)

MiToS communication
 Experiencing impairment 829 (21.0%) 669 (20.8%) 160 (22.3%) 0.33
 Not experiencing impairment 3111 (79.0%) 2552 (79.2%) 559 (77.7%)

MiToS breathing
Experiencing impairment 1308 (33.2%) 1056 (32.8%) 252 (35.0%) 0.20
Not experiencing impairment 2632 (66.8%) 2165 (67.2%) 467 (65.0%)
Time to MiToS walking/self-care impairment (months) 28.4 ± 24.2 29.0 ± 25.5 26.0 ± 17.5 0.43
Time to MiToS swallowing impairment (months) 29.1 ± 20.7 29.4 ± 21.4 28.0 ± 17.7 0.89
Time to MiToS communication impairment (months) 34.9 ± 26.7 36.0 ± 27.9) 30.4 ± 19.7 0.02
Time to MiToS breathing impairment (months) 31.8 ± 27.4 32.7 ± 29.2 28.3 ± 17.7 0.34
Survival
 Censored 739 (18.8%) 595 (18.5%) 144 (20.0%) 0.28
 Tracheostomised/dead 3201 (81.2%) 2626 (81.5%) 575 (80.0%)

Time to tracheostomy/death or censoring (months) 35.7 ± 29.8 35.9 ± 30.8 34.4 ± 24.8

http://www.r-project.org/
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Table 2  Demographic and clinical features of the ALS population included in the IT dataset

Full dataset (n = 1767) Training set (n = 1504) Test set (n = 263) p value

Medical centre
 Emilia-Romagna 594 (33.6%) 516 (34.3%) 78 (29.7%)  < 0.01
 Maugeri Foundation 123 (7.0%) 122 (8.1%) 1 (0.4%)
 Nemo Clinical Centre 209 (11.8%) 192 (12.8%) 17 (6.5%)
 Piemonte and Valle d'Aosta 841 (47.6%) 674 (44.8%) 167 (63.5%)

Sex
 Female 800 (45.3%) 696 (46.3%) 104 (39.5%) 0.03
 Male 967 (54.7%) 808 (53.7%) 159 (60.5%)

Onset site
 Bulbar 548 (31.0%) 459 (30.5%) 89 (33.8%) 0.24
 Spinal 1219 (69.0%) 1045 (69.5%) 174 (66.2%)

Familial
 No 1607 (90.9%) 1364 (90.7%) 243 (92.4%) 0.50
 Yes 116 (6.6%) 96 (6.4%) 20 (7.6%)
 < NA> 44 (2.5%) 44 (2.9%) 0 (0.0%)

Genetics
 C9orf72 86 (4.9%) 70 (4.7%) 16 (6.1%)  < 0.01
 FUS 7 (0.4%) 2 (0.1%) 5 (1.9%)
 SOD1 32 (1.8%) 29 (1.9%) 3 (1.1%)
 TARDBP 26 (1.5%) 24 (1.6%) 2 (0.8%)
 WT 1209 (68.4%) 1019 (67.8%) 237 (90.1%)
 <NA> 407 (23.0%) 360 (23.9%) 0 (0.0%)

FTD
 No 1325 (75.0%) 1094 (72.7%) 231 (87.8%) 0.02
 Yes 129 (7.3%) 97 (6.4%) 32 (12.2%)
 <NA> 313 (17.7%) 313 (20.8%) 0 (0.0%)

Age at onset (years) 63.4 ± 11.1 63.4 ± 11.2 63.2 ± 10.9 0.70
Diagnostic delay (months) 12.7 ± 12.3 12.9 ± 12.7 11.0 ± 9.5 0.19
Time between visits (months) 3.3 ± 3.5 3.4 ± 3.7 3.0 ± 2.7 0.15
Time since onset (months) 34.6 ± 32.3 34.4 ± 31.0 35.8 ± 37.6 0.40
BMI premorbid (kg/m2) 26.0 ± 4.0 26.0 ± 4.1 26.0 ± 3.8 0.68
BMI at diagnosis (kg/m2) 24.2 ± 5.2 24.1 ± 5.3 24.4 ± 4.8 0.31
FVC at diagnosis (%) 88.4 ± 24.6 88.5 ± 24.5 88.0 ± 25.1 0.93
NIV
 Administered 726 (41.1%) 618 (41.1%) 108 (41.1%) 0.99
 Not administered 1041 (58.9%) 886 (58.9%) 155 (58.9%)

PEG
 Administered 461 (26.1%) 397 (26.4%) 64 (24.3%) 0.45
 Not administered 1306 (73.9%) 1107 (73.6%) 199 (75.7%)

Time to NIV (months) 31.9 ± 28.2 32.3 ± 28.3 29.8 ± 27.7 0.34
Time to PEG (months) 31.1 ± 22.4 31.5 ± 23.2 28.7 ± 17.1 0.36
MiToS walking/self-care
 Experiencing impairment 1226 (69.4%) 1034 (68.8%) 192 (73.0%) 0.14
 Not experiencing impairment 541 (30.6%) 470 (31.2%) 71 (27.0%)

MiToS swallowing
 Experiencing impairment 612 (34.6%) 521 (34.6%) 91 (34.6%) 0.99
 Not experiencing impairment 1155 (65.4%) 983 (65.4%) 172 (65.4%)

MiToS communication
 Experiencing impairment 371 (21.0%) 317 (21.1%) 54 (20.5%) 0.83
 Not experiencing impairment 1396 (79.0%) 1187 (78.9%) 209 (79.5%)
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Results

Demographic and clinical information of ALS 
patients

A total of 3940 ALS patients and 24,615 data measure-
ments were included in the ITIS dataset (median follow-up 
27 months, IQR 18–44; median number of visits equal to 5, 
IQR 3–8). In the IT dataset a total of 1767 ALS patients and 
13,370 data measurements were included (median follow-
up 34 months, IQR 23–53; median number of visits equal 
to 6, IQR 3–10).

We split each dataset into a training set for developing 
the DBN models, and a completely independent test set for 
validating the models. In detail, for both the datasets, we 
proceeded by first splitting the data into two independent 
random groups, in a proportion of around 80:20. Then, we 
verified a posteriori that the two groups were balanced, by 
computing the Kruskal–Wallis and χ2 tests for the continu-
ous and the categorical variables, respectively. This proce-
dure was repeated several times by testing different random 
splits. Eventually, we selected the split that provided the best 
stratification based on the p values observed across all the 
variables. A detailed overview of the so-obtained training 
and test sets is reported in Table 1 and Table 2 for the ITIS 
and the IT datasets, respectively.

Dynamic Bayesian Networks of interactions 
among variables

Figure 1 shows the two networks learned on the ITIS and 
IT training sets. By analysing their graph representations, 
where each node corresponds to a variable, DBNs can be 
used to detect inter-dependencies among variables in terms 
of conditional probabilities, represented as in-going edges. 

In inspecting the graphs, emerging dependencies previously 
known in the literature can serve indirectly as model struc-
ture validation.

Model evaluation

The time-dependent ROC curves at various time points were 
computed for each predicted clinical outcome for the patients 
of the ITIS and IT test sets as explained in Section “Statisti-
cal analysis”. Their AU-ROC values at a 3-month step from 
the first visit starting from month 6 up to 96 months after the 
disease onset are shown in Fig. 2 for each outcome, together 
with the values of the iAU-ROC computed up to 24, 36, and 
96 months from the disease onset.

Tables 3 and 4 report for each outcome the AU-ROC val-
ues computed on the ITIS and the IT test sets, respectively, 
at month 6, 9, 12, 18, 24, 30, 36 since the disease onset. We 
choose this time grid to explore more in detail how the mod-
els perform in the first phases of the disease. Please notice 
that the values of the AU-ROC at 3 months have not been 
computed since, up to that time point, there were no real 
cases of impairment/death in our test data. For each outcome 
and time point, in Tables 3 and 4 we also report the number 
of real subjects experiencing the outcome within that time 
in the real follow-up.

For both the IT and the ITIS dataset, we can observe that 
the models present a good ability in discriminating the risk 
of the subjects, with AU-ROC values over all the outcomes 
in the first 36 months from the disease onset that are almost 
always above 0.75 for the ITIS test set and above 0.80 for 
the IT test set.

With respect to the iAU-ROC values reported in Fig. 2, 
we can observe that for each outcome the accuracy of the 
models over time is quite good, with iAU-ROC values in the 
first 36 months ranging from 0.80 to 0.93 for the ITIS basic 

Kruskal–Wallis and χ2 tests at 0.01 significance level were used for assessing the equality of the distributions of the continuous and the categori-
cal variables, respectively, in the training and independent test sets

Table 2  (continued)

Full dataset (n = 1767) Training set (n = 1504) Test set (n = 263) p value

MiToS breathing
 Experiencing impairment 803 (45.4%) 687 (45.7%) 116 (44.1%) 0.61
 Not experiencing impairment 964 (54.6%) 817 (54.3%) 147 (55.9%)

Time to MiToS walking/self-care impairment (months) 29.7 ± 25.5 30.3 ± 25.9 26.6 ± 22.5 0.04
Time to MiToS swallowing impairment (months) 28.8 ± 19.8 28.7 ± 19.7 29.2 ± 20.4 0.78
Time to MiToS communication impairment (months) 33.1 ± 21.4 33.1 ± 21.7 33.0 ± 19.7 0.77
Time to MiToS breathing impairment (months) 32.1 ± 27.6 32.4 ± 27.6 30.5 ± 27.5 0.48
Survival
 Censored 486 (27.5%) 427 (28.4%) 59 (22.4%) 0.03
 Tracheostomised/dead 1281 (72.5%) 1077 (71.6%) 204 (77.6%)

Time to tracheostomy/death or censoring (months) 43.4 ± 33.8 43.8 ± 33.7 41.6 ± 34.4 0.17
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scenario model, and from 0.84 to 0.89 for the IT advanced 
scenario, respectively. This denotes a good concordance of 
the predictions with the actual disease progression and thus 
confirms the ability of the models to simulate clinically reli-
able ALS populations by using the first screening visit only.

Figure 3 shows the cumulative probability of the true and 
simulated events of MiToS impairments and tracheostomy/
death overtime for the ITIS and IT test set populations. For 
the simulated outcomes, the confidence is reported as shaded 
regions. The high concordance between the predicted and 
actual ALS progression for both models confirms that the 
DBN models provide a precise simulation of survival and 
MiToS domain impairments.

We also quantitatively assessed the goodness of the cali-
bration as reported in Section “Statistical analysis”. This 
analysis resulted in no statistically significant distributions 
between the expected and the observed frequencies on the 
different time slices (p values between 0.23 and 0.26 for all 
the outcomes), thus confirming the good calibration of both 
the ITIS and the IT model.

Using the simulation tool for predicting the effect 
of risk factors on disease progression

The DBN model also allows patient cohort stratification, i.e., 
the partitioning of subjects through the identification of vari-
ables that affect the velocity of disease progression or sur-
vival. In detail, we traced how the disease course is sensitive 
to the change in a specific variable (risk factor), by in silico 
simulating ALS progression of populations with specific 
phenotypes at the first visit and comparing how they dif-
ferentiate in terms of disease severity and/or survival time.

Figure 4A displays the effect of the onset site on the time 
to swallowing impairment on the patients of the ITIS test set. 
We split the ITIS test set into patients having a bulbar onset 
and patients having a spinal onset, simulated their disease 
evolution over time, and then finally compared their pre-
dicted times to the swallowing impairment. This analysis 
shows that our model is able to predict that patients with 
bulbar onset have a higher probability of experiencing swal-
lowing impairment in earlier stages of the disease compared 
to patients with spinal onset, in keeping with previous stud-
ies [2, 5]. An effect of the onset site can also be detected by 
analysing the curves of cumulative probability of outcome 
occurrence, as reported on the right side of Fig. 4. Here, we 
can observe that the simulated bulbar cohort has an overall 

increased risk of experiencing an early swallowing impair-
ment with respect to the spinal cohort. Marked with a grey 
dotted line in the plot, we can for instance observe that, at 
month 50 after the onset, the bulbar cohort has a cumulative 
probability of around 76% of having already experienced the 
impairment, vs. 60% of the spinal cohort.

We also studied the effect of the FVC at diagnosis on 
the time to walking/self-care impairment on the patients 
of the IT test set. We first stratified the patients of the IT 
test set according to their FVC at diagnosis levels into three 
partitions (patients with FVC at diagnosis lower than 84%, 
between 84 and 101%, and higher than 101%). We then sim-
ulated the ALS progression for each partition separately and 
compared their times to the walking/self-care impairment 
(see Fig. 4B). This analysis shows that the lower the FVC 
at diagnosis, the sooner the patients are likely to lose their 
walking/self-care independence. Our model predicted that 
the walking/self-care impairment would most likely occur 
at 13 months from the disease onset for the patients with an 
FVC value at diagnosis lower than 84%, at 18 months for 
those with an FVC between 84 and 101%, and at 20 months 
for those with an FVC higher than 101% (see density 
curves). These predicted values are highly concordant with 
the real times to impairment experienced by the patients in 
the IT test set (16 months for the patients with FVC lower 
than 84%, 18 months for those with an FVC between 84 and 
101%, and 20 months for those with an FVC greater than 
101%). By also looking at the curves reporting the cumula-
tive probabilities of walking/self-care impairment given the 
different levels of FVC at diagnosis we can observe how hav-
ing an FVC value at diagnosis lower than 84% corresponds 
to an overall increased risk of experiencing the impairment 
in the first phase of the disease. Specifically, we can observe 
how the cohort with lower FVC values at diagnosis has, at 
month 50, a risk of almost 90% of having experienced the 
impairment, vs. values of 79% and 75% for the other two 
cohorts.

On the IT test set, we also studied the effect of the FVC at 
diagnosis on the time to the breathing impairment. As done 
above, we separately simulated the patients with FVC at 
diagnosis lower than 84%, between 84 and 101%, and higher 
than 101%, obtaining the plots reported in Fig. 4C. From the 
density plot, we can observe how the patients with FVC at 
diagnosis lower than 84% are the first cohort to probabilis-
tically experience an impairment of the breathing ability, 
which occurs for most of the patients around 17.5 months 
after the onset. The other two cohorts show a similar likely 
impairment at around 21.5 months. These trends also emerge 
from the cumulative curves, where we can observe that the 
risk of having a breathing impairment is much increased 
for the patients with FVC at diagnosis < 84% (probability at 
50 months equal to 89%, vs. probability equal to 69% and 
65% for the other two cohorts).

Fig. 1  Graph representations of the A ITIS and B IT DBNs, repre-
senting the conditional dependencies among the variables over time. 
The loops on the four MiToS domain variables represent the depend-
ency on the values of the same variable from the previous time-step. 
The red edges represent the dependencies defined as mandatory in the 
network learning stage

◂
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Fig. 2  Area Under the time-dependent ROC curve (AU-ROC) for 
the MiToS impairments and survival on the subjects of the A ITIS 
and B IT test sets, computed on a 3-month time step up to 96 months 

since the disease onset. For each clinical outcome, the integral of the 
AU-ROC (iAU-ROC) computed up to 24, 36, and 96 months is also 
reported
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Finally, we looked at the impact of the loss of autonomy 
in the walking/self-care domain at the time of the first visit 
on the time to impairment in the communication domain. We 
split the ITIS test set into two partitions, separating all the 
patients who already had their walking/self-care impaired at 
the time of their first visit from the rest, and then compared 
the simulated time to MiToS communication impairment 
for the two populations. The simulation (see Fig. 4D) shows 
that the patients who had already experienced the walking/
self-care impairment at their first visit were more likely to 
experience impairment in the communication domain at an 
earlier time point than the other patients (18 vs. 24 months 
after the onset). The analysis of the cumulative curves shows 
how, also, in this case, the risk of developing the communi-
cation impairment is generally increased over all the tempo-
ral span of progression for the cohort who already had a loss 
of autonomy in the walking/self-care domain. At 50 months, 
specifically, the risk of the already-impaired cohort is equal 
to 79%, vs. 52% for the non-already-impaired one.

Discussion

We developed a probabilistic model of the progression of 
ALS based on DBNs using data from six different clinical 
centres from Italy and Israel. Being comprised of patient 
visits from clinical contexts and partially never investi-
gated before, the datasets employed in this work are more 
representative of the general ALS population than the 
PRO-ACT or other clinical trials datasets.

Trained with the entire dynamics of the available data 
of disease progression, our models can be used to simulate 
and/or to predict, starting from a single time point, the 
entire patients’ disease progression, that can be simultane-
ously analysed in terms of time to the loss of independence 
in movement, swallowing, communication and breathing, 
as well as time to death.

The prediction accuracy was assessed by comparing the 
predicted patients’ prognosis with the real data: different 

Table 3  Area Under the time-dependent ROC curve (AU-ROC) values computed for the MiToS impairments and survival on the subjects of the 
ITIS test set at 6, 9, 12, 18, 24, 30, 36 months since the disease onset

For each clinical outcome and for each time point, the number of subjects experiencing the outcome within that time in their real follow-up is 
reported in brackets

Clinical outcome AU-ROC (number of subjects with real outcome)

t = 6 t = 9 t = 12 t = 18 t = 24 t = 30 t = 36

MiToS
Walking/self-care

0.94 (n = 10) 0.92 (n = 40) 0.90 (n = 73) 0.82 (n = 162) 0.84 (n = 220) 0.83 (n = 290) 0.83 (n = 342)

MiToS
Swallowing

0.98 (n = 3) 0.95 (n = 13) 0.93 (n = 27) 0.88 (n = 70) 0.86 (n = 106) 0.81 (n = 148) 0.76 (n = 186)

MiToS
Communication

0.98 (n = 1) 0.87 (n = 9) 0.89 (n = 19) 0.85 (n = 45) 0.80 (n = 70) 0.81 (n = 92) 0.75 (n = 112)

MiToS
Breathing

0.98 (n = 2) 0.88 (n = 13) 0.89 (n = 27) 0.78 (n = 79) 0.77 (n = 111) 0.75 (n = 150) 0.71 (n = 170)

Survival 0.99 (n = 12) 0.99 (n = 31) 0.99 (n = 69) 0.95 (n = 153) 0.91 (n = 242) 0.87 (n = 331) 0.84 (n = 382)

Table 4  Area Under the time-dependent ROC curve (AU-ROC) values computed for the MiToS impairments and survival on the subjects of the 
IT test set at 6, 9, 12, 18, 24, 30, 36 months since the disease onset

For each clinical outcome and for each time point, the number of subjects experiencing the outcome within that time in their real follow-up is 
reported in brackets

Clinical outcome AU-ROC (number of subjects with real outcome)

t = 6 t = 9 t = 12 t = 18 t = 24 t = 30 t = 36

MiToS
Walking/self-care

0.94 (n = 2) 0.82 (n = 16) 0.85 (n = 29) 0.81 (n = 67) 0.83 (n = 92) 0.85 (n = 115) 0.84 (n = 135)

MiToS
Swallowing

0.87 (n = 3) 0.93 (n = 5) 0.95 (n = 8) 0.86 (n = 26) 0.86 (n = 44) 0.84 (n = 57) 0.84 (n = 71)

MiToS
Communication

1.00 (n = 1) 1.00 (n = 3) 0.99 (n = 6) 0.78 (n = 13) 0.83 (n = 20) 0.82 (n = 28) 0.79 (n = 39)

MiToS
Breathing

1.00 (n = 1) 0.86 (n = 3) 0.85 (n = 13) 0.86 (n = 30) 0.82 (n = 48) 0.82 (n = 65) 0.80 (n = 78)

Survival 1.00 (n = 4) 0.97 (n = 12) 0.95 (n = 22) 0.90 (n = 54) 0.85 (n = 90) 0.85 (n = 122) 0.85 (n = 148)
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Fig. 3  Cumulative probability of impairment in the four MiToS 
domains and of tracheostomy/death overtime in the A ITIS and B 
IT test sets (orange line) and in the simulated population (green line: 

mean values over population; shaded region: standard deviation), 
based on probabilities modelled by the DBN
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Fig. 4  Density and cumula-
tive probability plots of the 
times A to MiToS swallowing 
impairment for the patients with 
bulbar and spinal onset from the 
ITIS test set, B to MiToS walk-
ing/self-care impairment for the 
patients from the IT test set with 
FVC at diagnosis lower than 
84%, between 84 and 101%, and 
higher than 101%, C to MiToS 
breathing impairment for the 
patients from the IT test set with 
FVC at diagnosis lower than 
84%, between 84 and 101%, 
and higher than 101%, and D to 
MiToS communication impair-
ment for the patients from the 
ITIS test set with and without 
walking/self-care impairment 
at the first visit. Most patients 
experience the impairment in 
correspondence with the maxi-
mum of the probability density 
curve (mode). For each patient, 
we ran 100 different simula-
tions of the disease progression. 
While the density curves focus 
for convenience on the first 
months of the time span (where 
the distributions were more sig-
nificant) the cumulative curves 
are shown until they reach the 
maximum values of 1
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performance metrics confirmed that the proposed models 
possess good performance in terms of both survival and 
domain impairment prediction. In addition, our models 
can also be used to stratify ALS patients into subgroups 
of different progression and to assess the effect of single 
phenotypes at diagnosis on the entire disease course.

By analysing the graphs reported in Fig. 1 and represent-
ing the networks learned on the ITIS and IT training sets, 
respectively, we can identify the relationships mined among 
the variables as well as disclose the pathways along which 
they influence the disease evolution. In this work, several 
notable inter-dependencies among variables can be iden-
tified and validated by comparison with literature results. 
Given a specific variable, its parents in the DBN graph can 
be intended as “composite biomarkers”, since the value of 
the variable at a certain time point can be inferred by their 
values at the previous one, thus extending the classic “stan-
dalone” biomarkers that have been used to date.

First, in line with expectations, we can observe that all 
the variables encoding the MiToS domains at a given time 
point, as well as NIV and PEG in the IT graph, depend on 
their own values at the previous time-point (graphically rep-
resented as loops). In the IT graph, NIV also depends on 
breathing and FVC at diagnosis (through walking/self-care), 
both variables related to respiratory functionality; PEG also 
depends on BMI at diagnosis and swallowing, both related 
to the initial and progressive impact of the disease on the 
nutrition ability.

The ITIS graph evidences that the loss of independence 
in breathing and in communicating at a specific time-point 
depends on the value of walking/self-care in the previous 
time-point: an impairment in walking/self-care increases the 
probability of experiencing an impairment in communicat-
ing and breathing in the next visits. The same relationships 
can be found in the IT graph as links between walking/self-
care and communicating, and between walking/self-care and 
NIV—a variable tightly associated with the breathing abil-
ity. In both graphs swallowing and communicating appear 
to be interrelated, as well as swallowing and breathing in 
the IT graph.

In both graphs, the time between visits depends on time 
since onset (either enforced or detected) and on walking/
self-care, indicating that the visit frequency could change 
based on the disease stage and its progression rate. The onset 
site depends on both sex (mandatory edge in ITIS, detected 
in IT) and age at onset, enforcing/confirming relationships 
known in literature: men have a greater likelihood of onset 
in the spinal regions, while women tend to have a higher 
propensity for bulbar-onset disease [2, 32, 33]; furthermore, 
bulbar onset is related to an older age at onset [34].

Both graphs show that survival time is dependent on, 
age at onset, medical centre and respiratory functionality 
(breathing, NIV [5, 12, 30, 35], and FVC at diagnosis [36]), 

besides time since onset (this latter edge was constrained 
in our model) [5, 12, 30]. The dependence of survival from 
both time since onset and respiratory function (breathing/
NIV/FVC at diagnosis) is quite intuitive; the dependence 
from age at onset has been long known in the literature [37], 
being a longer survival in younger patients probably cor-
related to their greater neuronal reserve.

The role of the medical centre in the dependencies 
detected in the networks merits a closer examination. In 
this work we decided to aggregate different data sources: 
although representing a strength in terms of quantity of 
available data and of generalizability of the developed mod-
els, this also implies that the data may be dissimilar under 
different aspects (see for instance of the mean survival time 
and time since onset that, as reported in Tables 1 and 2, are 
significantly different between the IT and the ITIS datasets). 
Related to this, it is worth noticing that, in general, different 
medical centres may take charge of patients with varying 
disease severity, according to their specialisation level, and 
implement different care or screening protocols as well as 
policies of life support interventions. To take these facts 
into account, we included the variable medical centre in 
the dataset. Another possibility would have been to learn 
a different network for each centre but, since ALS is a rare 
disease, this would have impactfully affected the quantity of 
available information.

These considerations on the patients’ variability support 
the dependencies of the medical centre that emerged, for 
instance, on diagnostic delay in the ITIS graph, on NIV 
and PEG on the IT graph, and on the time between visits 
and the survival in both graphs. Since DBNs are based on 
joint conditional distributions dependencies, i.e., they try to 
explain each variable as a joint function of all its parents, the 
medical centre variable can, on one side, be considered as 
a correction factor for the bias introduced by analysing dif-
ferent populations together. On the other hand, the effect of 
this variable should be interpreted in concert with the other 
parents. In any case, it has to be noticed that the relation-
ships involving other variables are detected anyway provided 
there is evidence in the data, and in this sense employing 
the medical centre variable does not result in any masking 
effects.

In both graphs, the relationship between onset site and 
swallowing may reflect the direct effect of the onset on the 
swallowing ability, with anticipated dysarthria and dyspha-
gia occurrence. In addition, the direct edge from onset site 
to diagnostic delay validates previously reported results [38, 
39]. Conversely, other studies have reported the lack of a 
significant difference in the diagnostic delay between bulbar- 
and spinal-onset patients [40, 41], leaving this relationship 
as an open question.

The genetic aetiology of ALS was correctly modelled in 
the IT graph, inferring the role on familial ALS of repeat 
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expansion in C9orf72 and mutations in TARDBP and 
SOD1 [42–44]. It is also interesting to observe that there is 
no dependency between familiarity and FUS, in line with 
the fact that the latter may be affected by de novo mutation 
(more frequently than other genes). The graph also evidences 
that FTD is related to mutations in TARDBP and C9orf72 
which were already associated with FTD phenotypes in 
previous studies [45, 46]. The influence of premorbid BMI 
on ALS familiarity also emerges, partially supporting the 
Gorges and colleagues’ study [47], which evidenced a rela-
tionship between premorbid BMI and hypothalamus atrophy.

Expected relationships among variables can also be found 
as indirect dependencies. For instance, the effect of the onset 
site on survival [2] can be identified from the following 
path in the ITIS graph: onset site → swallowing → breath-
ing → survival; and from the following path on the IT graph: 
onset site → walking/self-care → NIV → survival. The age 
at onset depends on SOD1 and C9orf72 directly and on 
TARDBP indirectly (through the familial variable in the 
IT graph): interestingly, the age-related penetrance of gene 
mutations is currently an open question in the literature [48, 
49].

Given the variables included in these models, a question 
could arise on the fact that the IT network does not show any 
direct relation between the variables FVC at diagnosis and 
NIV, as one might have instead expected. From the graph 
reported in Fig. 1, we can observe that in the IT network the 
NIV(t)’s direct parents are NIV(t − 1), breathing(t − 1), walk-
ing/self-care(t − 1), medical centre, and that two of these 
variables, namely the breathing and the walking/self-care 
variables, have in turn the FVC at diagnosis among their 
parents.

The mined relationships suggest therefore that the infor-
mation provided at time t − 1 by the breathing and the walk-
ing/self-care variables (together with the other parents) to 
the NIV is strong enough for explaining the distribution of 
the NIV values at the next time point t. In this sense, we can 
explain the “missing” direct edge between FVC at diagnosis 
(which in our dataset is available only at the baseline, as a 
static information) and NIV as a not strong-enough relation-
ship by itself, that can, however, be detected as mediated 
by the dynamic variables breathing and walking/self-care. 
Indeed the chain of relationships is [FVC at diagnosis] ⟶ 
[breathing and walking/self-care] ⟶ [NIV].

It is worth noticing that, when learning these relation-
ships, the dynamic variables did not have the constraint of 
depending on themselves at the previous time point (e.g., it 
was not imposed for NIV(t) to depend on NIV(t − 1)), nor 
were these relationships forbidden. In this way, the mod-
els had the chance to learn which are the most significant 
parents that allow predicting the data at the next time point 
with the highest accuracy. Forbidding these relationships 
would have probably led to lower performance. Interestingly, 

however, the fact that these dynamic variables have other 
parents in addition to themselves at (t − 1) means they alone 
do not carry enough information to explain what will happen 
in the future time point.

To assess the confidence of the identified edges, a boot-
strap procedure can be performed. The bootstrap technique 
generates different samples of a dataset and, for each sample, 
learns a DBN. The result is not a directed acyclic graph 
(DAG) and therefore it cannot be used to learn conditional 
probabilities, but a weighted partially DAG (WPDAG). In 
this latter graph, edges (i, j) weigh the number of times an 
edge going from node i to node j appears in a Bayesian net-
work learned from a bootstrap sample [28]. These numbers 
represent a measure of the confidence in the presence of each 
edge. We performed this analysis on 100 bootstrap samples 
for both the ITIS and the IT dataset (see Section “3.3. Boot-
strap-based DBN learning” in the Supplementary Informa-
tion). We can observe that a number edges of the WPDAGs 
correspond to those constituting the DBNs learned on the 
whole training sets and reported in Fig. 1, thus confirming 
the reliability of the identified dependencies.

It has to be noticed that the fact that the DBNs are based 
on joint conditional probabilities means that the combination 
of all the parent variables together has an effect on the value 
of the child variable at the following time point. Therefore, 
it can happen that varying the value of one parent at a time 
does not imply a marked change in the child variable.

For instance, in the stratification studies reported in Sec-
tion “Using the simulation tool for predicting the effect of 
risk factors on disease progression”, it can be observed how 
some risk factors, although discriminating the outcome, may 
not impact as much as one could have expected. This is the 
case e.g. of the site of onset with respect to the probability 
of experiencing a swallowing impairment (13 vs. 16 months 
for the bulbar vs spinal patients, respectively, marked with 
dotted lines in Fig. 4A). According to the DBN learned on 
the ITIS training set, the parents of MiToS swallowing are: 
MiToS breathing, onset site, time since onset (TSO), MiToS 
communicating, and the value of the MiToS swallowing 
variable itself at the previous time point. This means that 
the combination of all these variables together has an effect 
on the occurrence (or not) of an impairment in the swallow-
ing domain at the next time point. By looking at stratified 
cohorts that differentiate not only on the onset site but also 
on others of the above-mentioned parent variables, the dis-
criminant effect could thus be clearer. However, given the 
generally high number of parents for each variable in the 
networks, in this work we decided to limit the stratification 
analysis to a single variable per time, focusing on its role as 
a prognostic risk factor.

A possible limitation of our approach is that the proposed 
models can only employ discrete variables. This implies that, 
on one side, all continuous variables must be discretised into 
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a finite set of levels before being processed and, on the other, 
the models can only predict the most probable range of each 
variable instead of their actual continuous values.

Another aspect concerns the management of the miss-
ing information in the data, a very common situation when 
handling real-world clinical data. In this work, we managed 
the missing data in two different ways, depending if we are 
in the learning phase or in the simulation/validation phase. 
In the learning phase, we employed an implementation of 
the DBNs that computes the conditional probabilities on all 
the combinations of the available training set data. In other 
words, even if some values are missing in the training sam-
ples, all the subjects’ consecutive records will still be used, 
limited to their available values (available-cases approach). 
On the other side, in the simulation/validation phase we only 
employed subjects with a complete first visit.

In principle, there are of course other options that can 
be considered. For instance, the users could first adopt an 
imputation procedure on the test set’s first visit patient data 
using state-of-the-art algorithms. As an alternative, a DBN 
itself can be employed for estimating the missing data, by 
using belief propagation for introducing knowledge received 
from the children variables of the network. In this way, if 
the value of one variable is not recorded at time t (let’s say 
our first visit), it can still be figured out based on the val-
ues of its children variables at time t + 1 (the second visit 
of the subject). However, this use of a DBN requires some 
care, especially if the so-imputed data are then used for pre-
diction. This imputation may in fact be considered a sort 
of bias in the data since the same introduced information 
will be predicted through the simulation procedure. For the 
work presented here, therefore, we choose not to implement 
any imputation procedure. As a future development, we are 
considering extending the usability of the tool by removing 
the current constraint of completeness of the starting data, 
given of course that any embedded imputation will require 
a proper validation of its reliability.

Related to this, it has to be noticed how, in the current 
implementation of this tool, it is beneficial to have a simpler 
model (like the one built on the ITIS dataset) that requires 
the availability of only a few variables to predict the patient’s 
prognosis.

One important aspect that has to be taken into account 
when developing a tool based on DBN is the complexity 
of this modelling approach: in general, indeed, learning an 
optimal bayesian network structure is NP-hard. To address 
this issue, in the learning phase we adopted some constraints 
useful to limit the space of possible solutions, such as impos-
ing some mandatory edges or forbidding relationships 
between different layers, using common sense and avail-
able know-how to drive our choices. In addition, as a heu-
ristic to find the optimum solution, we used the Max–Min 
Hill-Climbing algorithm. Although reducing the learning 

complexity by limiting the explored space of possible net-
works, these choices could bring to a local minimum. On 
the other hand, a search of the global optimum on the entire 
space of possible solutions would have been computationally 
infeasible. Another aspect related to the constraints imposed 
in the learning phase is that the data available in our clini-
cal datasets include both static and dynamic features. It was 
therefore necessary to appropriately define the layers and 
the possible dependencies among them to correctly manage 
these twofold temporal nature of the variables.

Despite these limitations, as far as we know our tool is 
the first one that, fully relying on real-world data, allows us 
to simulate ALS progression in a probabilistic and dynamic 
setting. Different from other predictive methods which allow 
predicting survival time or, more in general, time to some 
kind of event, DBNs allow modelling and predicting how all 
dynamic variables evolve in time and how these variables 
influence each other in terms of conditional dependencies. 
Moreover, as opposed to other models that return a punctual 
prediction of the time of occurrence of an outcome (e.g., 
[5, 6, 8]), our tool is able to simulate the whole progres-
sion trajectory of a patient from their starting visit on, thus 
providing a continuous estimate of the risk of experienc-
ing multiple outcomes at the same time. From this point 
of view, therefore, a comparison with other methods is not 
straightforward.

However, we can analyse how the predictive performance 
of our model compares with other models built on similar 
data in terms of AU-ROC at a given time point or in terms 
of the ability to rank patients based on their risk. For sake 
of comparison, we employed our data to implement a Cox 
regression analysis with Lasso (least absolute shrinkage and 
selection operator) [50] considering as outcome the survival: 
for both the ITIS and the IT datasets, we trained a Cox-Lasso 
regression model on the same data used to learn the DBN 
models, given that such model only learns on a baseline 
condition that is, in our case, the first visit for each train-
ing patient. Then we assessed their predictive performance, 
obtaining an iAU-ROC equal to 0.74 and 0.76 on the ITIS 
and the IT test sets, respectively. This can be compared with 
the global performance of the DBNs evaluated in terms of 
iAU-ROC over the first 96 months from the disease onset 
that were found to be equal to 0.85 and 0.86 on the ITIS and 
IT test sets, respectively.

Notably, we implemented a simulation dashboard based 
on our tool using the Shiny framework for R [51] with the 
aim to make it available to clinicians as an interactive web 
application for research use. Figure 5 shows its graphical 
user interface. The physician can enter on the left side of 
the screen the clinical data recorded during the first contact 
with the patient, and then start the simulation with up to 
1000 repetitions (100 repetitions were used in the presented 
example). The plots on the right side of the screen give the 



Journal of Neurology 

1 3

probability of impairment in each of the four main MiToS 
domains and for survival. In our implementation, differ-
ent simulations can be run sequentially, allowing the user 
to decide whether to keep the plots from previous simula-
tions to be viewed alongside the plots from the last one. 
This way, it is possible to estimate the effect of one or more 
biomarkers on the ALS prognosis, simulating and assessing 
the impact of specific variables on risk anticipation and/or 
augmentation: for instance, Fig. 5 compares the effects of the 
spinal vs. bulbar onsets while leaving all other parameters 
unchanged.

An instrument able to simulate the probability of occur-
rence of the patients’ outcomes in the main areas of disabil-
ity will have a strong impact in scheduling the allocation 
of the resources both at the individual and health system 
level, likely reducing the cost of the care by improving the 
provision of pharmacological and non-pharmacological 
therapies. The developed tool can also be used to generate 
in silico populations. For example, it is possible to simulate 

a population of subjects with bulbar onset by sampling the 
other variables from real data. Furthermore, a reliable model 
of ALS progression could potentially serve as a control 
group when the use of a placebo may not be appropriate or 
feasible or could allow a smaller control group if used in 
combination [11]. We are currently exploring these applica-
tions for our developed tool.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 022- 11022-0.
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