Spray deposited copper zinc tin sulphide (Cu<inf>2</inf>ZnSnS<inf>4</inf>) film as a counter electrode in dye sensitized solar cells
Journal article
Swami, S.K., Chaturvedi, N., Kumar, A., Chander, N., Dutta, V., Kumar, D.K., Ivaturi, A., Senthilarasu, S. and Upadhyaya, H.M. (2014). Spray deposited copper zinc tin sulphide (Cu<inf>2</inf>ZnSnS<inf>4</inf>) film as a counter electrode in dye sensitized solar cells. Physical Chemistry Chemical Physics. 16 (43), pp. 23993-23999. https://doi.org/10.1039/c4cp03312d
Authors | Swami, S.K., Chaturvedi, N., Kumar, A., Chander, N., Dutta, V., Kumar, D.K., Ivaturi, A., Senthilarasu, S. and Upadhyaya, H.M. |
---|---|
Abstract | Stoichiometric thin films of Cu2ZnSnS4 (CZTS) were deposited by the spray technique on a FTO coated glass substrate, with post-annealing in a H2S environment to improve the film properties. CZTS films were used as a counter electrode (CE) in Dye-Sensitized Solar Cells (DSCs) with N719 dye and an iodine electrolyte. The DSC of 0.25 cm2 area using a CE of CZTS film annealed in a H2S environment under AM 1.5G illumination (100 mW cm-2) exhibited a short circuit current density (JSC) = 18.63 mA cm-2, an open circuit voltage (VOC) = 0.65 V and a fill factor (FF) = 0.53, resulting in an overall power conversion efficiency (PCE) = 6.4%. While the DSC using as deposited CZTS film as a CE showed the PCE = 3.7% with JSC = 13.38 mA cm-2, VOC = 0.57 V and FF = 0.48. Thus, the spray deposited CZTS films can play an important role as a CE in the large area DSC fabrication. © the Partner Organisations 2014. |
Keywords | CZTS; Spray Process; Sulphurisation; Dye Sensitized Solar Cell |
Year | 2014 |
Journal | Physical Chemistry Chemical Physics |
Journal citation | 16 (43), pp. 23993-23999 |
Publisher | Royal Society of Chemistry (RSC) |
ISSN | 1463-9076 |
Digital Object Identifier (DOI) | https://doi.org/10.1039/c4cp03312d |
Publication dates | |
15 Oct 2014 | |
Online | 06 Oct 2014 |
Publication process dates | |
Accepted | 29 Sep 2014 |
Deposited | 02 Feb 2021 |
Accepted author manuscript | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/8vyy2
Download files
Accepted author manuscript
Spray deposited copper zinc tin sulphide (Cu 2 ZnSnS 4) film as a counter electrode in dye sensitized solar cells.doc | ||
License: CC BY 4.0 | ||
File access level: Open |
2
total views1
total downloads2
views this month0
downloads this month
Export as
Related outputs
Hypothesis on the Influence of the Magnetic Behaviour of Hydrogen Doped Zinc Oxide during its Plasma Sputtering Process
Salimian, A., Hasnath, A., Aminishahsavarani, A. and Upadhyaya, H. (2021). Hypothesis on the Influence of the Magnetic Behaviour of Hydrogen Doped Zinc Oxide during its Plasma Sputtering Process. Coatings. 11 (222). https://doi.org/10.3390/coatings11020222Horizons of modern molecular dynamics simulation in digitalized solid freeform fabrication with advanced materials
Goel, S., Knaggs, M., Goel, G., Zhou, X.W., Upadhyaya, H., Thakur, V.K., Bizarri, G., Tiwari, A., Murphy, A., Stukowski, A. and Matthews, A. (2020). Horizons of modern molecular dynamics simulation in digitalized solid freeform fabrication with advanced materials. Materials Today Chemistry. 18. https://doi.org/10.1016/j.mtchem.2020.100356Horizons of modern molecular dynamics simulation in digitalised solid freeform fabrication with advanced materials
Goel, S., Knaggs, M., Goel, G., Zhou, X. W., Upadhyaya, H.M., Thakur, V. F., Kumar, V., Bizarri, G., Tiwari, A., Murphy, A., Stukowskii, A. and Matthewsj, A. (2020). Horizons of modern molecular dynamics simulation in digitalised solid freeform fabrication with advanced materials. Materials Today Chemistry. 18, p. 100356. https://doi.org/10.1016/j.mtchem.2020.100356Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films
Kumi-Barimah, E, Penhale-Jones, R, Salimian, A, Upadhyaya, H, Hasnath, A and Jose, G (2020). Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films. Scientific Reports. 10 (1). https://doi.org/10.1038/s41598-020-67367-xResilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic
Goel, S., Hawi, S., Goel, G., Thakur, V.K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H., Cross, G. and Barber, A. (2020). Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2020.100300Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications
Kishore Kumar, D, Loskot, J, Kříž, J, Bennett, N, Upadhyaya, HM, Sadhu, V, Venkata Reddy, C and Reddy, KR (2020). Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications. Solar Energy. 199, pp. 570-574. https://doi.org/10.1016/j.solener.2020.02.050Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared using RF Plasma Sputtering Under Reducing Atmosphere
Salimian, A., Upadhyaya, H., Hasnath, A., Aminishahsavarani, A., Pardo Sanchez, C., Anguilano, L., Uchechukwu O. and Sanchez, C (2020). Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared using RF Plasma Sputtering Under Reducing Atmosphere. Coatings. 10 (5), p. 472. https://doi.org/10.3390/coatings10050472Optical analysis of RF sputtering plasma through colour characterization
Salimian, A., Haghpanahan, R., Hasnath, A. and Upadhyaya, H. (2019). Optical analysis of RF sputtering plasma through colour characterization. Coatings. 9 (5), pp. 315-315. https://doi.org/10.3390/coatings9050315