Design and optimisation of process parameters in an in-line CIGS evaporation pilot system

Journal article


Wei, Z., Bobbili, P.R., Senthilarasu, S., Shimell, T. and Upadhyaya, H.M. (2014). Design and optimisation of process parameters in an in-line CIGS evaporation pilot system. Surface & Coatings Technology. 241, pp. 159-167. https://doi.org/10.1016/j.surfcoat.2013.10.033
AuthorsWei, Z., Bobbili, P.R., Senthilarasu, S., Shimell, T. and Upadhyaya, H.M.
Abstract

Substantial efforts have been made globally towards improving Cu(In,Ga)Se2 thin film solar cell efficiencies with several organisations successfully exceeding the 20% barrier on a research level using the three-stage CIGS process, but commercial mass production of the three-stage process has been limited due to the technological difficulties of scaling-up. An attempt has been made to identify these issues by designing and manufacturing an in-line pilot production deposition system for the three-stage CIGS process which is capable of processing 30cm×30cm modules. The optimisation of the process parameters such as source and substrate temperature, deposition uniformity, flux of copper, indium, gallium and selenium and thickness control has been presented in this investigation. A simplistic thickness distribution model of the evaporated films was developed to predict and validate the designed deposition process, which delivers a comparable simulation compared with the experimental data. These experiments also focused on the optimisation of the temperature uniformity across 30cm×30cm area using a specially designed graphite heating system, which is crucial to form the correct α-phase CIGS in the desired time period. A three-dimensional heat transfer model using COMSOL Multiphysics 4.2a software has been developed and validated with the help of experimental data. © 2013 The Authors.

KeywordsCIGS solar cells ; Up-scaling; Uniformity; Evaporation; Thickness ; Heat transfer
Year2014
JournalSurface & Coatings Technology
Journal citation241, pp. 159-167
PublisherElsevier BV
ISSN0257-8972
Digital Object Identifier (DOI)https://doi.org/10.1016/j.surfcoat.2013.10.033
Publication dates
Print25 Feb 2014
Publication process dates
Deposited02 Feb 2021
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8vyy5

Download files


Publisher's version
SCT 241(2014)159-167.pdf
License: CC BY 4.0
File access level: Open

  • 1
    total views
  • 2
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Hypothesis on the Influence of the Magnetic Behaviour of Hydrogen Doped Zinc Oxide during its Plasma Sputtering Process
Salimian, A., Hasnath, A., Aminishahsavarani, A. and Upadhyaya, H. (2021). Hypothesis on the Influence of the Magnetic Behaviour of Hydrogen Doped Zinc Oxide during its Plasma Sputtering Process. Coatings. 11 (222). https://doi.org/10.3390/coatings11020222
Horizons of modern molecular dynamics simulation in digitalized solid freeform fabrication with advanced materials
Goel, S., Knaggs, M., Goel, G., Zhou, X.W., Upadhyaya, H., Thakur, V.K., Bizarri, G., Tiwari, A., Murphy, A., Stukowski, A. and Matthews, A. (2020). Horizons of modern molecular dynamics simulation in digitalized solid freeform fabrication with advanced materials. Materials Today Chemistry. 18. https://doi.org/10.1016/j.mtchem.2020.100356
Horizons of modern molecular dynamics simulation in digitalised solid freeform fabrication with advanced materials
Goel, S., Knaggs, M., Goel, G., Zhou, X. W., Upadhyaya, H.M., Thakur, V. F., Kumar, V., Bizarri, G., Tiwari, A., Murphy, A., Stukowskii, A. and Matthewsj, A. (2020). Horizons of modern molecular dynamics simulation in digitalised solid freeform fabrication with advanced materials. Materials Today Chemistry. 18, p. 100356. https://doi.org/10.1016/j.mtchem.2020.100356
Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films
Kumi-Barimah, E, Penhale-Jones, R, Salimian, A, Upadhyaya, H, Hasnath, A and Jose, G (2020). Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films. Scientific Reports. 10 (1). https://doi.org/10.1038/s41598-020-67367-x
Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic
Goel, S., Hawi, S., Goel, G., Thakur, V.K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H., Cross, G. and Barber, A. (2020). Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2020.100300
Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications
Kishore Kumar, D, Loskot, J, Kříž, J, Bennett, N, Upadhyaya, HM, Sadhu, V, Venkata Reddy, C and Reddy, KR (2020). Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications. Solar Energy. 199, pp. 570-574. https://doi.org/10.1016/j.solener.2020.02.050
Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared using RF Plasma Sputtering Under Reducing Atmosphere
Salimian, A., Upadhyaya, H., Hasnath, A., Aminishahsavarani, A., Pardo Sanchez, C., Anguilano, L., Uchechukwu O. and Sanchez, C (2020). Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared using RF Plasma Sputtering Under Reducing Atmosphere. Coatings. 10 (5), p. 472. https://doi.org/10.3390/coatings10050472
Optical analysis of RF sputtering plasma through colour characterization
Salimian, A., Haghpanahan, R., Hasnath, A. and Upadhyaya, H. (2019). Optical analysis of RF sputtering plasma through colour characterization. Coatings. 9 (5), pp. 315-315. https://doi.org/10.3390/coatings9050315
Ambient stable, hydrophobic, electrically conductive porphyrin hole-extracting materials for printable perovskite solar cells
Reddy, G., Katakam, R., Devulapally, K., Jones, L.A., Della Gaspera, E., Upadhyaya, H.M., Islavath, N. and Giribabu, L. (2019). Ambient stable, hydrophobic, electrically conductive porphyrin hole-extracting materials for printable perovskite solar cells. Journal of Materials Chemistry C. 7 (16), pp. 4702-4708. https://doi.org/10.1039/c9tc00605b
Optimizing room temperature binder free TiO2 paste for high efficiency flexible polymer dye sensitized solar cells
Kishore Kumar, D, Hsu, MH, Ivaturi, A, Chen, B, Bennett, N and Upadhyaya, HM (2019). Optimizing room temperature binder free TiO2 paste for high efficiency flexible polymer dye sensitized solar cells. Flexible and Printed Electronics. 4 (1), pp. 015007-015007. https://doi.org/10.1088/2058-8585/ab02c4
Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications
Kumar, DK, Suazo-Davila, D, García-Torres, D, Cook, NP, Ivaturi, A, Hsu, MH, Martí, AA, Cabrera, CR, Chen, B, Bennett, N and Upadhyaya, HM (2019). Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications. Electrochimica Acta. 305, pp. 278-284. https://doi.org/10.1016/j.electacta.2019.03.040
Scalable screen-printing manufacturing process for graphene oxide platinum free alternative counter electrodes in efficient dye sensitized solar cells
Kumar, DK, Swami, SK, Dutta, V, Chen, B, Bennett, N and Upadhyaya, HM (2019). Scalable screen-printing manufacturing process for graphene oxide platinum free alternative counter electrodes in efficient dye sensitized solar cells. FlatChem. 15, pp. 100105-100105. https://doi.org/10.1016/j.flatc.2019.100105
Screen printed tin selenide films used as the counter electrodes in dye sensitized solar cells
Kishore Kumar, D, Popuri, SR, Swami, SK, Onuoha, OR, Bos, JW, Chen, B, Bennett, N and Upadhyaya, HM (2019). Screen printed tin selenide films used as the counter electrodes in dye sensitized solar cells. Solar Energy. 190, pp. 28-33. https://doi.org/10.1016/j.solener.2019.07.066
Investigating the emission characteristics of single crystal YAG when activated by high power laser beams
Salimian, A, Silver, J, Fern, GR, Upadhyaya, H, Metcalfe, A, Ireland, TG, Harris, P and Haghpanahan, R (2016). Investigating the emission characteristics of single crystal YAG when activated by high power laser beams. ECS Journal of Solid State Science and Technology. 5 (10), pp. R172-R177. https://doi.org/10.1149/2.0271610jss
Laser diode induced lighting modules
Salimian, A., Fern, G.R., Upadhyaya, H. and Silver, J. (2016). Laser diode induced lighting modules. ECS Journal of Solid State Science and Technology. 5 (3), pp. R26-R33. https://doi.org/10.1149/2.0101603jss
High mobility titanium-doped indium oxide for use in tandem solar cells deposited via pulsed DC magnetron sputtering
Grew, B, Bowers, JW, Lisco, F, Arnou, N, Walls, JM and Upadhyaya, HM (2014). High mobility titanium-doped indium oxide for use in tandem solar cells deposited via pulsed DC magnetron sputtering. Energy Procedia. 60 (C), pp. 148-155. https://doi.org/10.1016/j.egypro.2014.12.357
Spray deposited copper zinc tin sulphide (Cu<inf>2</inf>ZnSnS<inf>4</inf>) film as a counter electrode in dye sensitized solar cells
Swami, S.K., Chaturvedi, N., Kumar, A., Chander, N., Dutta, V., Kumar, D.K., Ivaturi, A., Senthilarasu, S. and Upadhyaya, H.M. (2014). Spray deposited copper zinc tin sulphide (Cu<inf>2</inf>ZnSnS<inf>4</inf>) film as a counter electrode in dye sensitized solar cells. Physical Chemistry Chemical Physics. 16 (43), pp. 23993-23999. https://doi.org/10.1039/c4cp03312d