Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films

Journal article


Kumi-Barimah, E, Penhale-Jones, R, Salimian, A, Upadhyaya, H, Hasnath, A and Jose, G (2020). Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films. Scientific Reports. 10 (1). https://doi.org/10.1038/s41598-020-67367-x
AuthorsKumi-Barimah, E, Penhale-Jones, R, Salimian, A, Upadhyaya, H, Hasnath, A and Jose, G
Abstract

In this paper, we report anatase and rutile titanium oxide (TiO2) nanoparticulate thin films fabricated on silica and Indium Tin Oxide (ITO) substrates using femtosecond pulsed laser deposition (fs-PLD). Depositions were carried-out at substrate temperatures of 25 °C, 400 °C and 600 °C from anatase and rutile phase target materials. Effect of substrate temperature on the surface morphology, microstructural, optical, and electrical properties of these films were systematically investigated by using various range of measurements such as scanning electron microscopy, (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Ultraviolet–visible-near infrared (UV–Vis–NIR) spectroscopy, and Hall Effect measurements. It is observed that the TiO2 thin films surface are predominated with nanoparticulates of diameter less 35 nm, which constitute about ~ 70%; while the optical bandgaps and electrical resistivity decrease with increasing substrate temperature. A mixed-phase (anatase/rutile) TiO2 thin film was produced at a substrate temperature of 400 °C when samples are fabricated with anatase and rutile target materials. The results of this study indicate that the structural and crystallinity, optical, and electrical properties can be controlled by varying fs-PLD process parameters to prepare TiO2 thin films, which are suitable for applications in photovoltaics, solar cells, and photo-catalysis.

Year2020
JournalScientific Reports
Journal citation10 (1)
PublisherSpringer Science and Business Media LLC
ISSN2045-2322
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-020-67367-x
Publication dates
PrintDec 2020
Online23 Jun 2020
Publication process dates
Accepted29 May 2020
Deposited24 Jun 2020
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/89zzq

Download files

Publisher's version
nature scientific reports.pdf
License: CC BY 4.0
File access level: Open

  • 7
    total views
  • 2
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic
Goel, S., Hawi, S., Goel, G., Thakur, V.K., Pearce, O., Hoskins, C., Hussain, T., Agrawal, A., Upadhyaya, H., Cross, G. and Barber, A. (2020). Resilient and Agile Engineering Solutions to Address Societal Challenges like Coronavirus Pandemic. Materials Today Chemistry. https://doi.org/10.1016/j.mtchem.2020.100300
Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications
Kishore Kumar, D, Loskot, J, Kříž, J, Bennett, N, Upadhyaya, HM, Sadhu, V, Venkata Reddy, C and Reddy, KR (2020). Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications. Solar Energy. 199, pp. 570-574. https://doi.org/10.1016/j.solener.2020.02.050
Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared using RF Plasma Sputtering Under Reducing Atmosphere
Salimian, A., Upadhyaya, H., Hasnath, A., Aminishahsavarani, A., Pardo Sanchez, C., Anguilano, L., Uchechukwu O. and Sanchez, C (2020). Highly Conductive Zinc Oxide Based Transparent Conductive Oxide Films Prepared using RF Plasma Sputtering Under Reducing Atmosphere. Coatings. 10 (5), p. 472. https://doi.org/10.3390/coatings10050472
Optimizing room temperature binder free TiO2 paste for high efficiency flexible polymer dye sensitized solar cells
Kishore Kumar, D, Hsu, MH, Ivaturi, A, Chen, B, Bennett, N and Upadhyaya, HM (2019). Optimizing room temperature binder free TiO2 paste for high efficiency flexible polymer dye sensitized solar cells. Flexible and Printed Electronics. 4 (1), pp. 015007-015007. https://doi.org/10.1088/2058-8585/ab02c4
Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications
Kumar, DK, Suazo-Davila, D, García-Torres, D, Cook, NP, Ivaturi, A, Hsu, MH, Martí, AA, Cabrera, CR, Chen, B, Bennett, N and Upadhyaya, HM (2019). Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications. Electrochimica Acta. 305, pp. 278-284. https://doi.org/10.1016/j.electacta.2019.03.040
Scalable screen-printing manufacturing process for graphene oxide platinum free alternative counter electrodes in efficient dye sensitized solar cells
Kumar, DK, Swami, SK, Dutta, V, Chen, B, Bennett, N and Upadhyaya, HM (2019). Scalable screen-printing manufacturing process for graphene oxide platinum free alternative counter electrodes in efficient dye sensitized solar cells. FlatChem. 15, pp. 100105-100105. https://doi.org/10.1016/j.flatc.2019.100105
Screen printed tin selenide films used as the counter electrodes in dye sensitized solar cells
Kishore Kumar, D, Popuri, SR, Swami, SK, Onuoha, OR, Bos, JW, Chen, B, Bennett, N and Upadhyaya, HM (2019). Screen printed tin selenide films used as the counter electrodes in dye sensitized solar cells. Solar Energy. 190, pp. 28-33. https://doi.org/10.1016/j.solener.2019.07.066