Rational interpolation of car motions
Journal article
Selig, JM (2015). Rational interpolation of car motions. Journal of Mechanisms and Robotics. 7 (3). https://doi.org/10.1115/1.4030298
Authors | Selig, JM |
---|---|
Abstract | © 2015 by ASME. This work introduces a general approach to the interpolation of the rigid-body motions of cars by rational motions. A key feature of the approach is that the motions produced automatically satisfy the kinematic constraints imposed by the car wheels, that is, cars cannot instantaneously translate sideways. This is achieved by using a Cayley map to project a polynomial curve in the Lie algebra se(2) to SE(2) the group of rigid displacements in the plane. The differential constraint on se(2), which expresses the kinematic constraint on the car, is easily solved for one coordinate if the other two are given, in this case as polynomial functions. In this way, families of motions obeying the constraint can be found. Several families are found here and examples of their use are shown. It is shown how rest-to-rest motions can be generated in this way and also how these motions can be joined so that the motion is continuous and differentiable across the join. A final section discusses the optimization of these motions. For some cost functions, the optimal motions are known but can be rather impractical to use. By optimizing over a family of motions which satisfy the boundary conditions for the motion, it is shown that rational motions can be found simply and are close to the overall optimal motion. |
Year | 2015 |
Journal | Journal of Mechanisms and Robotics |
Journal citation | 7 (3) |
Publisher | American Society of Mechanical Engineers |
ISSN | 1942-4302 |
Digital Object Identifier (DOI) | https://doi.org/10.1115/1.4030298 |
Publication dates | |
24 Jun 2015 | |
Publication process dates | |
Deposited | 10 Jun 2016 |
Accepted | 16 Mar 2015 |
Accepted author manuscript | License File Access Level Open |
Additional information | The publisher does not allow us to make available a copy of this article. |
https://openresearch.lsbu.ac.uk/item/87682
Restricted files
Accepted author manuscript
118
total views0
total downloads1
views this month0
downloads this month