Potential hazard consequences to personnel exposed to the ignition of small volumes of weakly confined stoichiometric hydrogen/air mixture

Journal article


Averill, A, Ingram, J, Gomez-Augustina, L, Holborn, P, Battersby, P and Benson, CM (2018). Potential hazard consequences to personnel exposed to the ignition of small volumes of weakly confined stoichiometric hydrogen/air mixture. International Journal of Hydrogen Energy. 43 (50), pp. 22733-22745.
AuthorsAverill, A, Ingram, J, Gomez-Augustina, L, Holborn, P, Battersby, P and Benson, CM
Abstract

Many studies have been devoted to understanding the consequence of ignition events that could occur as a result of using hydrogen as an alternative to fossil fuels or when hydrogen is present in large scale industrial or nuclear waste sites. Little attention has however, been given to the effect of explosion in small scale operations: this could involve service work with manual handling and manipulation of gas containing packages or vessels. The purpose of this study is to begin to address this knowledge gap and report the results of an experimental program carried out to simulate the effect of localised and weakly confined small volume hydrogen explosions on personal safety. Three aspects of personal injury consequences are considered; injury from shock loading to the head/brain, skin burns and acoustic/hearing damage. It is concluded from ignition and acoustic noise exposure experiments, carried with stoichiometric hydrogen /air mixtures, that injuries arising from shock loading or burns to the skin are less likely than hearing damage. It is suggested that further work should focus on the noise exposure and hearing damage effects of small scale explosions.

Keywords09 Engineering; 03 Chemical Sciences; Energy
Year2018
JournalInternational Journal of Hydrogen Energy
Journal citation43 (50), pp. 22733-22745
PublisherElsevier
ISSN0360-3199
Digital Object Identifier (DOI)doi:10.1016/j.ijhydene.2018.10.092
Publication dates
Print06 Nov 2018
Publication process dates
Deposited12 Oct 2018
Accepted10 Oct 2018
Accepted author manuscript
License
CC BY-NC-ND 4.0
Permalink -

https://openresearch.lsbu.ac.uk/item/868w8

Accepted author manuscript

  • 7
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Related outputs

Causes, Consequences and Prevention of Refrigeration Fires in Residential Dwellings
Beasley, M, Holborn, P, Ingram, J and Maidment, G (2018). Causes, Consequences and Prevention of Refrigeration Fires in Residential Dwellings. Fire Safety Journal. 102, pp. 66-67.
A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes
Ghatauray, TS, Ingram, JM and Holborn, PG (2018). A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes. International Journal of Hydrogen Energy.
Surface temperature generation during drop weight mechanical impact and the usefulness of dynamic thermocouple measurements for predicting impact ignition of flammable gases
Ingram, JM, Averill, AF, Holborn, PG, Battersby, P and Benson, CM (2018). Surface temperature generation during drop weight mechanical impact and the usefulness of dynamic thermocouple measurements for predicting impact ignition of flammable gases. Journal of Loss Prevention in the Process Industries. 55, pp. 10-18.
Chemochromic Pd-V2O5 Sensors for Passive Hydrogen Detection in Nuclear Containments
O'Hara, R, Holborn, PG, Ingram, JM, Ball, J, Rathbone, P and Edge, R (2018). Chemochromic Pd-V2O5 Sensors for Passive Hydrogen Detection in Nuclear Containments. 2018 WM Symposia, Nuclear and Industrial Robotics, Remote Systems and Other Emerging Technologies. Phoenix, Arizona, USA 18 - 22 Mar 2018 London South Bank University.
Application of Bayesian methods and networks to ignition hazard event prediction in nuclear waste decommissioning operations
Averill, AF, Ingram, JM, Holborn, PG, Battersby, P and Benson, CM (2018). Application of Bayesian methods and networks to ignition hazard event prediction in nuclear waste decommissioning operations. Process Safety and Environmental Protection. 116, pp. 396-404.
An experimental and CFD study into the dispersion of buoyant gas using passive venting in a small fuel cell enclosure
Ghatauray, T, Ingram, JM and Holborn, PG (2016). An experimental and CFD study into the dispersion of buoyant gas using passive venting in a small fuel cell enclosure. IChemE Hazards 26. Edinburgh 24 - 26 May 2016 London South Bank University.
A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes.
Ghatauray, T, Ingram, JM and Holborn, PG (2017). A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes. HYSAFE: International Conference On Hydrogen Safety. Hamburg, Germany 11 - 13 Sep 2017 London South Bank University.
Characterising the performance of hydrogen sensitive coatings for nuclear safety applications
O'Hara, R, Ingram, JM, Holborn, PG, Ball, J, Edge, R and Rathbone, P (2017). Characterising the performance of hydrogen sensitive coatings for nuclear safety applications. International Conference on Hydrogen Safety (ICHS 2017). Hamburg, Germany 11 - 13 Sep 2017 London South Bank University.
Dispersion of VOC vapours in the surface treatment workspace: influence of variability in diffusivity, mass transfer and air velocity.
Hilborne, V and Averill, AF (2016). Dispersion of VOC vapours in the surface treatment workspace: influence of variability in diffusivity, mass transfer and air velocity. Transactions of the IMF. 94 (1), pp. 24-31.
Energy losses during drop weight mechanical impacts with special reference to ignition of flammable atmospheres in nuclear decommissioning: theory and determination of experimental coefficients for impact analysis and prediction
Averill, AF, Ingram, JM, Holborn, PG and Battersby, P (2017). Energy losses during drop weight mechanical impacts with special reference to ignition of flammable atmospheres in nuclear decommissioning: theory and determination of experimental coefficients for impact analysis and prediction. International Journal of Impact Engineering. 109, pp. 92-103.
Fire suppression systems in aircraft: Their past, present & future
Benson, CM, Fernandez-Cerezo, G, Holborn, PG and Mba, D (2016). Fire suppression systems in aircraft: Their past, present & future. Fire Investigation. 1 (3), pp. 34-41.
Domestic Refrigerator Design -Safety Issues and Opportunities
Beasley, M, Holborn, PG, Ingram, JM and Maidment, GG (2017). Domestic Refrigerator Design -Safety Issues and Opportunities. The Institute of Refrigeration Event 2nd March 2017. London South Bank University 02 - 02 Mar 2017 London South Bank University.
Challenges for the development of EFFICIENT - An Environmentally Friendly Fire Suppression System for Cargo using Innovative Green Technology
Fernandez-Cerezo, G, Benson, CM, Holborn, PG and Mba, D (2016). Challenges for the development of EFFICIENT - An Environmentally Friendly Fire Suppression System for Cargo using Innovative Green Technology. Institute of Fire Engineers RE16. Birmingham Nov 2016 London South Bank University.