The development of a model for the prediction of polymer spontaneous ignition temperatures in high pressure enriched oxygen across a range of pressures and concentrations

Journal article


Benson, CM, Bishop, AM, Ingram, JM, Phillips, R and Nolan, PF (2016). The development of a model for the prediction of polymer spontaneous ignition temperatures in high pressure enriched oxygen across a range of pressures and concentrations. Journal of Loss Prevention in the Process Industries. 44 (Nov), pp. 369-379. https://doi.org/10.1016/j.jlp.2016.10.007
AuthorsBenson, CM, Bishop, AM, Ingram, JM, Phillips, R and Nolan, PF
Abstract

High pressure enriched oxygen is used in a wide number of areas, including aircraft, medical breathing apparatus, diving, mining and mountaineering operations. It is also used for a number of industrial processes, but is most commonly used for combustion. Where the pressure or concentration of oxygen is increased well above that of atmospheric, oxidation reactions occur more readily, and at a faster rate, relative to those under atmospheric conditions. Thus the criteria used for polymer selection is key to preventing, or at least limiting, the possibility of a catastrophic oxygen incident which endangers both property and human life. In this work spontaneous ignition temperature (SIT) data obtained in high pressure enriched oxygen from both differential scanning calorimetry and oxygen bomb testing are compared. A model is derived to enable the calculation of a SIT of a non-metal at any pressure and oxygen concentration using existing test data from other pressures. This has been shown to work with reasonable success for most materials tested, being validated using the comparison of test data from the oxygen bomb test and Pressurised Differential Scanning Calorimetry (PDSC) testing. These results may indicate the suitability of a PDSC for safety testing in the future. Further work is needed to increase the data base of ignition test data from PDSCs, and thermodynamic constants to allow for the direct comparison, and to assess the suitability of this apparatus for safety testing of more materials.

Year2016
JournalJournal of Loss Prevention in the Process Industries
Journal citation44 (Nov), pp. 369-379
PublisherElsevier
ISSN1873-3352
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jlp.2016.10.007
Funder/ClientMinistry of Defence
Harrier Jaguar Survival IPT
Publication dates
Print14 Oct 2016
Publication process dates
Deposited16 Mar 2017
Accepted13 Oct 2016
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/871yy

Download files


Accepted author manuscript
JLP-D-16-00376R1.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 139
    total views
  • 349
    total downloads
  • 3
    views this month
  • 2
    downloads this month

Export as

Related outputs

Reducing fire risk in buildings: the role of fire safety expertise and governance in building and planning approval
Benson, C. and Elsmore, S. (2021). Reducing fire risk in buildings: the role of fire safety expertise and governance in building and planning approval. Journal of Housing and the Built Environment. https://doi.org/10.1007/s10901-021-09870-9
Cryogenic Fuel Storage Modelling And Optimisation For Aircraft Applications
Rompokos, P., Rolt, A., Nalianda, D., Sibilli, T. and Benson, C. (2021). Cryogenic Fuel Storage Modelling And Optimisation For Aircraft Applications. ASME Turbo Expo 2021 Turbomachinery Technical Conference and Exposition GT2021 June 7-11, 2021. Online 07 - 11 Jun 2021 ASME International.
Performance Evaluation of Nitrogen for Fire Safety Application in Aircraft
Dinesh, A, Benson, CM, Holborn, PG, Sampath, S and Xiong, Y (2020). Performance Evaluation of Nitrogen for Fire Safety Application in Aircraft. Reliability Engineering & System Safety. 202, p. 107044. https://doi.org/10.1016/j.ress.2020.107044
Combined Hazard Analyses to Explore the Impact of Liquid Hydrogen Fuel on the Civil Aviation Industry
Benson, C, Holborn, P, Ingram, J, Rolt, A and Alexander, E (2020). Combined Hazard Analyses to Explore the Impact of Liquid Hydrogen Fuel on the Civil Aviation Industry. ASME Turbo Expo 2020. London 22 - 26 Jun 2020
Ignition of flammable hydrogen/air mixtures by high mass mechanical impact of Magnox contaminated surfaces
Averill, A., Ingram, J., Holborn, P., Battersby, P. and Benson, C. (2020). Ignition of flammable hydrogen/air mixtures by high mass mechanical impact of Magnox contaminated surfaces. International Journal of Hydrogen Energy. 45 (4), pp. 3372-3380. https://doi.org/10.1016/j.ijhydene.2019.11.148
An analysis of civil aviation industry safety needs for the introduction of liquid hydrogen propulsion technology
Benson, CM, Ingram, JM, Battersby, PA, Mba, D, Sethi, V and Rolt, AM (2019). An analysis of civil aviation industry safety needs for the introduction of liquid hydrogen propulsion technology. TURBO EXPO Turbomachinery Technical Conference & Exposition. Phoenix AZ, USA 18 - 20 Jun 2019
Identification of ignition sources in high pressure enriched gaseous oxygen system incidents using flow chart road map diagram methodology
Benson, C. and Ingram, JM (2018). Identification of ignition sources in high pressure enriched gaseous oxygen system incidents using flow chart road map diagram methodology. Process Safety and Environmental Protection. 114, pp. 206-218. https://doi.org/10.1016/j.psep.2017.12.020
Chemochromic Pd-V2O5 Sensors for Passive Hydrogen Detection in Nuclear Containments
O'Hara, R, Holborn, PG, Ingram, JM, Ball, J, Rathbone, P and Edge, R (2018). Chemochromic Pd-V2O5 Sensors for Passive Hydrogen Detection in Nuclear Containments. 2018 WM Symposia, Nuclear and Industrial Robotics, Remote Systems and Other Emerging Technologies. Phoenix, Arizona, USA 18 - 22 Mar 2018
Application of Bayesian methods and networks to ignition hazard event prediction in nuclear waste decommissioning operations
Averill, AF, Ingram, JM, Holborn, PG, Battersby, P and Benson, CM (2018). Application of Bayesian methods and networks to ignition hazard event prediction in nuclear waste decommissioning operations. Process Safety and Environmental Protection. 116, pp. 396-404. https://doi.org/10.1016/j.psep.2018.03.002
Surface temperature generation during drop weight mechanical impact and the usefulness of dynamic thermocouple measurements for predicting impact ignition of flammable gases
Ingram, JM, Averill, AF, Holborn, PG, Battersby, P and Benson, CM (2018). Surface temperature generation during drop weight mechanical impact and the usefulness of dynamic thermocouple measurements for predicting impact ignition of flammable gases. Journal of Loss Prevention in the Process Industries. 55, pp. 10-18. https://doi.org/10.1016/j.jlp.2018.05.015
A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes
Ghatauray, TS, Ingram, JM and Holborn, PG (2018). A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes. International Journal of Hydrogen Energy. 44 (17), pp. 8904-8913. https://doi.org/10.1016/j.ijhydene.2018.08.065
Potential hazard consequences to personnel exposed to the ignition of small volumes of weakly confined stoichiometric hydrogen/air mixture
Averill, A, Ingram, J, Gomez-Agustina, L., Holborn, P, Battersby, P and Benson, CM (2018). Potential hazard consequences to personnel exposed to the ignition of small volumes of weakly confined stoichiometric hydrogen/air mixture. International Journal of Hydrogen Energy. 43 (50), pp. 22733-22745. https://doi.org/10.1016/j.ijhydene.2018.10.092
Domestic Refrigerator Design -Safety Issues and Opportunities
Beasley, M, Holborn, PG, Ingram, JM and Maidment, GG (2017). Domestic Refrigerator Design -Safety Issues and Opportunities. The Institute of Refrigeration Event 2nd March 2017. London South Bank University 02 - 02 Mar 2017
Energy losses during drop weight mechanical impacts with special reference to ignition of flammable atmospheres in nuclear decommissioning: theory and determination of experimental coefficients for impact analysis and prediction
Averill, AF, Ingram, JM, Holborn, PG and Battersby, P (2017). Energy losses during drop weight mechanical impacts with special reference to ignition of flammable atmospheres in nuclear decommissioning: theory and determination of experimental coefficients for impact analysis and prediction. International Journal of Impact Engineering. 109, pp. 92-103. https://doi.org/10.1016/j.ijimpeng.2017.05.019
Characterising the performance of hydrogen sensitive coatings for nuclear safety applications
O'Hara, R, Ingram, JM, Holborn, PG, Ball, J, Edge, R and Rathbone, P (2017). Characterising the performance of hydrogen sensitive coatings for nuclear safety applications. International Conference on Hydrogen Safety (ICHS 2017). Hamburg, Germany 11 - 13 Sep 2017
A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes.
Ghatauray, T, Ingram, JM and Holborn, PG (2017). A comparison study into low leak rate buoyant gas dispersion in a small fuel cell enclosure using plain and louvre vent passive ventilation schemes. HYSAFE: International Conference On Hydrogen Safety. Hamburg, Germany 11 - 13 Sep 2017 London South Bank University.
Ignition of flammable atmospheres by mechanical stimuli
Ingram, JM (2016). Ignition of flammable atmospheres by mechanical stimuli. hazardex: Journal for Hazardous Area Environment.
Report on BSN100 standards Oxygen System Safety update for BSi ACE001 committee
Benson, CM (2016). Report on BSN100 standards Oxygen System Safety update for BSi ACE001 committee. British Standards Institution.
An experimental and CFD study into the dispersion of buoyant gas using passive venting in a small fuel cell enclosure
Ghatauray, T, Ingram, JM and Holborn, PG (2016). An experimental and CFD study into the dispersion of buoyant gas using passive venting in a small fuel cell enclosure. IChemE Hazards 26. Edinburgh 24 - 26 May 2016
Fire suppression systems in aircraft: Their past, present & future
Benson, CM, Fernandez-Cerezo, G, Holborn, PG and Mba, D (2016). Fire suppression systems in aircraft: Their past, present & future. Fire Investigation. 1 (3), pp. 34-41.
Challenges for the development of EFFICIENT - An Environmentally Friendly Fire Suppression System for Cargo using Innovative Green Technology
Fernandez-Cerezo, G, Benson, CM, Holborn, PG and Mba, D (2016). Challenges for the development of EFFICIENT - An Environmentally Friendly Fire Suppression System for Cargo using Innovative Green Technology. Institute of Fire Engineers RE16. Birmingham Nov 2016