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24 Abstract

25 Patterns of inter-joint coordination in the kicking legs of taekwondo players were investigated 

26 to understand movement pattern variability as a functional property of skill level. Elite and 

27 non-elite players performed roundhouse kicks against a custom-built moving target fitted with 

28 an accelerometer, and movements were recorded by motion capture. Average foot segment 

29 velocities of 13.6 m.s-1 and 11.4 m.s-1 were recorded for elite and non-elite players respectively 

30 (p < 0.05), corresponding to target accelerations of 87.5 g and 70.8 g (p < 0.05). Gradient values 

31 derived from piecewise linear regression of CRP curves established the comparative 

32 incoordination of non-elite taekwondo players in the form of an overshoot behaviour during 

33 the crucial period leading to target impact (p < 0.05). This overshoot was apparent in both knee-

34 hip and ankle-knee CRP curves. Elite players generated greater limb speed and impact force 

35 through more effective limb segment coordination. The combination of CRP and piecewise 

36 linear regression techniques allowed identification of alternate joint control approaches in the 

37 two groups.

38 Keywords: Continuous relative phase, piecewise linear regression, roundhouse kick, 

39 variability

40 Word count: 3996
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42 Introduction

43 Human movement variability and the complex manner in which skills and coordination 

44 alter over time pose challenges in describing and analysing human movement systems. The 

45 multiple degrees of freedom of the body in motion allow for a broad range of movement 

46 patterns and strategies.1 Studies of motor control from the perspective of dynamical systems 

47 theory indicate that variability in movement is important for changes in coordination to occur 

48 and assists learning of new movements through identification of variations in relevant 

49 parameters.2 The continuous relative phase (CRP) technique provides a measure of the 

50 coordinative interaction of two segments or joints throughout the entire movement cycle, and 

51 allows evaluation of the adaptability of coordination patterns.3–5 CRP is obtained from the 

52 difference in phase angle of two predominantly oscillatory movements.6 The relative phase 

53 angle is constructed from the state space of the respective position and velocity phase portraits 

54 for each segment or joint.7 The main advantage of CRP is that it combines four variables - 

55 displacements and velocities of proximal and distal joints - into one measure.2

56 Kicks are the primary attacking skills in martial arts disciplines since kicking transfers 

57 a much larger impact to an opponent than punching.8,9 The roundhouse kick has previously 

58 been identified as the most commonly used kick in martial arts competitions such as karate, 

59 muay thai and taekwondo and several fundamental movement patterns and techniques are held 

60 in common for roundhouse kick movement.10 Central shared characteristics are swift pelvic 

61 axial rotation, hip abduction, and high knee flexion and extension velocities, combined with 

62 rapid movements of the centre of mass in approach to target.10 O’Sullivan et al11 compared 

63 characteristics of taekwondo and yongmundo players’ roundhouse kicks. They found quite 

64 small differences between peak impact forces according to the height of the target (6400 vs 

65 6393 N for mid-level and 5419 vs 5475 N for high targets, for taekwondo and yongmundo 

66 players respectively).11 Lee12 found the medio-lateral displacement of the centre of mass in 
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67 taekwando players was much smaller than for hapkido players. According to Lee12, smaller 

68 medio-lateral displacement of the body centre of mass in taekwondo players is associated with 

69 limited movement of the trunk, which permits a faster defensive response against an opponent 

70 player.

71 The roundhouse kick has previously been identified as the most commonly used kick 

72 in taekwondo, accounting for approximately 63% of kicks used by taekwondo players during 

73 competition and 89% of total points scored.9,13 Biomechanical characteristics of the kick 

74 include end velocities at the foot ranging from 11 to 17 m.s-1, 9,14–16 and impact forces in excess 

75 of 6 kN.11,14,17,18 However, these measurements provide no insight into how a roundhouse kick 

76 is performed and lack the precision with which to categorise expert proficiency. 

77 Estevan et al19 and Quinzi et al20 presented the only studies that have explicitly 

78 addressed the coordination pattern of the roundhouse kick in elite players. Estevan et al19 

79 showed greater variability when athletes had to kick from an initial stance position they were 

80 not accustomed to, and it was suggested that this indicated the adaptability of the athletes’ 

81 execution technique. Quinzi et al20 noted a significant shift in coordination pattern when 

82 comparing roundhouse kicks without a target and to a target. Neither study addressed player 

83 skill acquisition as taekwondo experience accumulated and therefore provided no insight into 

84 how training might operate to improve kicking performance. To date, no published studies have 

85 reported on Bernstein’s concepts of operation of degrees of freedom related to spatiotemporal 

86 coordination of the roundhouse kick in particular, i.e. both freeing degrees of freedom with 

87 training associated with the development of functional coupling and constraining abundant 

88 degrees of freedom for control. 

89 This study attempts to gain insight into skill acquisition in ecologically-valid moving-target 

90 kicking for elite and non-elite taekwondo players using CRP in combination with piecewise 

91 linear regression. The latter method splits the range of a variable into intervals and fits a linear 
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92 function to data for each interval.21 This was used to determine differences between elite and 

93 non-elite players in the temporal organisation of CRP data and how they operate in dynamic 

94 performance environments. The tools used in this study could bridge a communication gap 

95 between coaches and scientists. In summary, the over-arching aim of this paper is to understand 

96 movement pattern differences as a functional property of the level of skill of taekwondo 

97 players. We hypothesised differences in leg coordination patterns between elite and non-elite 

98 taekwondo players, particularly in the target approach phase of the kick. Specifically, we 

99 hypothesised that CRP measures of limb segment relations would reveal differences in 

100 coordination between players of different skill levels. 

101 Methods

102 Taekwondo players were recruited for this study: elite (8 males and 1 female; age 27.0 ± 0.4 

103 yr; mass 74 ± 1 kg; height 1.7 ± 0.1 m) and non-elite (9 males; age 35.0 ± 0.1 yr; mass 86 ± 3 

104 kg; height 1.8 ± 0.1 m). (Measures expressed as mean ± SEM throughout.) The elite taekwondo 

105 players had practised taekwondo for more than eighteen years (18.8 ± 1.5 yr) and had competed 

106 at a minimum of A-class international and national levels across all taekwondo weight 

107 categories for a minimum of eight years (8.3 ± 1.0 yr). The non-elite taekwondo players had 

108 practised Taekwondo for a shorter period of time (3.2 ± 0.2 yr), had trained at a recreational 

109 level and competed with experience of approximately one year (1.6 ± 0.5 yr). The experimental 

110 protocol was given approval by London South Bank University Research Ethics Committee 

111 and all players provided written informed consent prior to taking part in the study. 

112 Main testing took place on a target stage (Figure 1). This was a 2.5 m × 2.5 m raised 

113 platform with a 0.5 m × 0.5 m space cut from one edge to accommodate a kicking bag target 

114 (Figure 1a). The stage was covered with martial arts matting to ensure sufficient friction against 

115 the players’ feet during operation of the experimental protocol. The kicking bag was secured 

116 in a hemispherical base filled with 75 kg of concrete and coated with rubber (Figure 1c). A 
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117 commercially available kicking bag (Body Sculpture, Bradford, UK), made from high-density 

118 plastic foam and encased in a durable vinyl cover, served as the target (Figure 1b). 

119 [Insert Figure 1 about here]

120 The players did eight to twelve practice trials (elite 9.2 ± 0.1, non-elite 9.4 ± 0.1) to become 

121 comfortable with markers placed on their skin and familiar with the procedure. The players 

122 were then asked to perform five roundhouse kicks (Figure 2). The player was instructed to 

123 move backwards and forwards on the command “1-2” and to initiate a roundhouse kick with 

124 the back leg soon after the word “PLAY” appeared on a screen (Figure 1d). 

125 The target was drawn to one side for each roundhouse kick trial and was released at the moment 

126 “PLAY” appeared on the screen. Small variations in the starting position of the target and the 

127 starting position of the taekwondo player combined with the hemispheric target base and the 

128 lack of cylindrical symmetry of the target meant that the trajectories of the target and the kicks 

129 produced by the players were not identical to one another, though broadly similar.

130 [Insert Figure 2 about here]

131 Target acceleration data were captured using a 1000 g triaxial accelerometer (Kistler

132 8763B1KB, Amherst, NY, USA). The acceleration data were digitally filtered with a low-pass 

133 Butterworth 4-channel coupler (Kistler, Type 5134). The signals from the coupler were sent to 

134 a PC-based data acquisition system (Qualisys Track Manager, Qualisys AB, Sweden) at a 

135 sampling rate of 1000 Hz per channel.15 The cut-off frequency for the acceleration signal was 

136 200 Hz.22 The accelerometer was rigidly fixed inside the kicking bag at the midpoint on a 6.0 

137 cm × 4.0 cm aluminium plate secured to the inside by four self-tap screws (Figure 1e-f). The 

138 accelerometer position was the target point for the taekwondo player (Figure 1a) with the height 

139 of that point selected by each player during their familiarisation period. This was arranged by 

140 shifting the height of the kicking bag on the target post (Figure 1a). Roundhouse kick 

141 movements were recorded using reflective markers of 12 mm diameter attached to the skin by 
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142 double-sided adhesive tape on relevant anatomical landmarks according to Collins et al23 with 

143 slight modification to suit this research (Table 1). Kinematic data were acquired using an eight-

144 camera motion-analysis system (Oqus 3-series, Qualisys AB, Gothenburg, Sweden) sampling 

145 at 500 Hz.

146 [Insert Table 1 about here]

147 Data analysis had four main steps: (i) building an articulated lower-limb system in order 

148 to derive segment centre of mass velocities and joint angles; (ii) specification of roundhouse 

149 kick movements in terms of instants and periods in order to progress the analysis and relate 

150 these to the peak resultant target acceleration; (iii) calculation of CRP phase values, mean 

151 absolute relative phase and deviation phase; and (iv) use of piecewise linear regression to 

152 determine the temporal structure of CRP curves. 

153  (i) Inverse kinematics was applied to a seven-segment model for each player (pelvis, 

154 thighs, shanks and feet) using Visual3D software (C-Motion Inc, Germantown, MD, USA). 

155 Joint constraints were enforced such that segments could rotate with three degrees of freedom, 

156 but not translate with respect to the adjacent segment.24 

157 Segment centre of mass velocities were measured from the global coordinate system and 

158 sagittal plane joint angle displacements were defined by a Cardan rotation sequence (XYZ) 

159 with respect to a distal frame of reference, with the exception of the pelvis angle, which was 

160 defined relative to the global coordinate system.25 Winter’s residual analysis technique and 

161 fourth-order low-pass Butterworth filters were used to smooth data (cut-offs of 8, 10 and 12 

162 Hz for hip, knee and ankle respectively).26 

163 (ii) Three instants were defined for the kicking leg for each roundhouse kick: toe-off 

164 (TO), maximum knee flexion (MF) and impact (IM, Figure 2). The minimum value of the 

165 anteroposterior component of the foot segment trajectory defined TO; IM was taken to 

166 correspond to the peak resultant acceleration of the target. Two periods were defined from these 
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167 instants: Release (TO-MF) and Impact (MF-IM). Each movement period was interpolated to 

168 101 points in order to normalise different kicking cycles. The peak velocities of segment 

169 centres of mass for TO-MF and MF-IM and the peak resultant target acceleration were 

170 calculated using Visual 3D. 

171 (iii) Phase plots for the hip, knee and ankle joint were created by plotting angular 

172 velocity as a function of the angular displacement in the sagittal plane.20 The angular 

173 displacements and velocities were normalised to a range -1 to +1 according to Li.27 The phase 

174 angle for each joint at each data point was then calculated from the portrait trajectory.4 The 

175 CRP angles for knee-hip and ankle-knee joint couplings were calculated as the difference 

176 between the distal and proximal joint phase angles.2 This was subsequently expressed as a 

177 single measure - mean absolute relative phase - to summarise the overall phase relationship.29 

178 A higher mean absolute relative phase value reflects joints having more of an out-of-phase 

179 relationship; lower mean absolute relative phase reflects joints having a more in-phase 

180 relationship.5,30 The deviation phase served to define the stability of the coupling.2 A high 

181 deviation phase value indicates variable, relatively unstable, movement relations for the paired 

182 joints and vice versa.28 All data were calculated using custom code written in MATLAB 2013a 

183 (MathWorks Inc, Natick, MA, USA). 

184 (iv) Piecewise linear regression was applied to the time courses of knee-hip and ankle-

185 knee CRP data for each kick and for the kick periods TO-MF and MF-IM. Each kick period 

186 was normalised to 101 data points and each time course was divided into five phases of 20 data 

187 points with 10 “knot” data points defining the start and end of each phase (Figure 3). The 

188 number of knot data points was established through a trial-and-error approach and numbers of 

189 knots were constant across kicks. Phase 1 was delimited by knots at data points 1 and 20, phase 

190 2 by knots at 21 and 40 and so forth. Five phases summarised the time courses effectively and 

191 illustrated the contrasts between the two groups’ CRP trajectories. The phases might have been 
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192 of different lengths but keeping to equal lengths achieved desirable simplicity. The piecewise 

193 linear regression model for each phase was represented by an equation derived from least 

194 squares linear regression (Figure 3). In this way each CRP curve was summarised in terms of 

195 10 parameters (the gradients and intercepts of the fitted lines) and the temporal development 

196 of the kicks could be directly compared between elite and non-elite groups. The least squares 

197 fits were carried out using MATLAB (Figure 3).

198 [Insert Figure 3 about here]

199 Statistical analysis: The primary significance level was set at α = 0.05. Kinematics, 

200 mean absolute relative phase, deviation phase and piecewise linear regression gradient data 

201 were checked for outliers and normality for both groups using the Kolmogorov-Smirnov test 

202 (all p > 0.05) and there was homogeneity of variance as evaluated by Levene’s test (all p > 

203 0.05). Therefore univariate ANOVA was employed to determine the differences between elite 

204 and non-elite taekwondo players for segment velocities for each period. A mixed model 

205 repeated measures ANOVA with skill level (elite vs non-elite) as the between-subjects factor 

206 was used additionally to identify main and interaction effects in piecewise linear regression 

207 gradients. Bonferroni-adjusted post-hoc tests were used when significant effects were noted. 

208 Effect sizes (η2) were also calculated. SPSS software (version 21, SPSS Inc, Chicago, IL, USA) 

209 was used for all statistical tests.

210 Results

211 Higher velocities for the segment centre of masses were noted in the approach to contact 

212 (period MF-IM compared with period TO-MF) for both groups, and there was a progressive 

213 increase in maximum velocity from the most proximal to the most distal segment (Table 2). 

214 The elite players had higher segment centre of mass velocities for the two periods and for all 

215 segments; however, significant group differences were only found for the shank during TO-

216 MF (F(1, 52) = 29, p = 0.001, η2 = 0.21) and MF-IM (F(1, 52) = 17, p = 0.001, η2 = 0.24), and for 
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217 the foot during MF-IM (F(1, 52) = 19, p = 0.001, η2 = 0.29). In addition, peak resultant target 

218 accelerations were significantly higher for the elite players (87.5 ± 4.1 g) than their non-elite 

219 counterparts (70.8 ± 2.8 g; F (1, 52) = 30, p = 0.01, η2 = 0.36).

220 [Insert Table 2 about here]

221 CRP curves for elite and non-elite taekwondo players, averaged over all players in the 

222 group, had broadly similar CRP patterns for the two time periods and both coupling profiles 

223 (knee-hip, ankle-knee; Figure 4). The maxima and minima of the curves are marked on the 

224 graphs. For non-elite TO-MF and elite TO-MF and MF-IM these extrema lie at the ends of the 

225 periods, i.e. at data points 1 and 101. For non-elites for the crucial MF-IM period, the maxima 

226 are significantly distant from the ends of the relevant periods, indicating overshoots in relative 

227 joint movements for non-elite players. The point of inflection time-wise is earlier for non-elite 

228 than elite and the gradient at the inflection point is higher for non-elite players: non-elite 

229 relative joint movements are premature and overly rapid when compared to higher-impact elite 

230 kicking. In both groups there is a positive gradient of the knee-hip CRP curve for both periods 

231 (Figure 4a-b). This indicates the knee joint is moving faster in phase space with respect to the 

232 hip joint. The ankle-knee CRP curves show similar patterns for both groups and periods (Figure 

233 4c-d). However, the gradients of curves in the ankle-knee coupling are opposite to those for 

234 the knee-hip coupling, indicating the knee joint is moving faster in phase space than the ankle 

235 joint. 

236 [Insert Figure 4 about here]

237 Significant differences in piecewise CRP gradients for ankle-knee and knee-hip 

238 couplings were revealed by ANOVA (phases [1 to 5] and skill level as main factors). This was 

239 the case for both movement periods (all p < 0.05; Figure 5). Significant differences were also 

240 found in the interaction between group and phase for the gradient of knee-hip and ankle-knee 

241 CRPs for MF-IM (F(1.5, 66.8) = 110, p = 0.002, η2 = 0.21 and F(1.3, 67.7) = 6.1, p = 0.01, η2 = 0.11 
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242 respectively). All of the differences above were statistically significant for ANOVA with skill 

243 level (elite vs non-elite) as the between-subjects factor: gradients for knee-hip and ankle-knee 

244 CRP for MF-IM (F(1, 52) = 8.4, p = 0.007, η2 = 0.16 and F(1, 52) = 22, p = 0.001, η2 = 0.31 

245 respectively). Bonferroni post-hoc tests revealed the knee-hip differences were significantly 

246 different between the first and subsequent phases (p < 0.05) for MF-IM, the only exception 

247 being knee-hip CRP during MF-IM for phase 1 vs 4 (p = 1.0). Bonferroni post-hoc tests for the 

248 gradient ankle-knee CRP revealed a significant effect between all phase pairs (p < 0.05) with 

249 the exception of phase 1 vs 4 (p = 0.99). The elite and non-elite taekwondo players produced 

250 broadly similar gradient patterns for the two periods for both knee-hip and ankle-knee CRP 

251 (Figure 5). However, absolute values of the gradient were lower for both knee-hip and ankle-

252 knee for elite players during MF-IM, reflecting smoother movement transitions for the elite in 

253 the approach to impact.

254 [Insert Figure 5 about here]

255 No statistically significant differences were found between the two taekwondo groups 

256 for knee-hip or ankle-knee mean absolute relative phase and deviation phase values (all p > 

257 0.05; Figure 6). 

258 [Insert Figure 6 about here]

259 Discussion

260 The purpose of this work was to investigate lower body joint coupling during 

261 roundhouse kick movement in elite and non-elite taekwondo players in order to gain insight 

262 into skill acquisition and, hence, potential to identify points of focus for training early-stage 

263 taekwondo players in improving kicking technique. Maximum velocities of the kicking foot 

264 were on average 20% greater for the elite group and corresponding linear target accelerations 

265 were 24% greater. The combination of CRP and piecewise linear regression methods identified 

266 differences in the temporal structure of coordination between elite and non-elite groups. The 

Page 14 of 31

Human Kinetics, 1607 N Market St, Champaign, IL 61825

Journal of Applied Biomechanics



For Peer Review

267 gradient values derived from piecewise linear regression of CRP for non-elite taekwondo 

268 players established overshoot behaviour in their approach to target impact. The elite players 

269 move leg joints progressively during the crucial period leading to impact.

270 Bernstein31 proposed that development of skill would involve the gradual unfreezing of 

271 degrees of freedom and this, in relation to limb segments and this study, was hypothesised to 

272 occur in a proximal to distal sequence. Later in the learning process, once the performer has 

273 achieved mastery of redundant degrees of freedom over the skill, more efficient solutions to 

274 the degrees of freedom problem would be used.31 Specifically, joints, segments, muscles and 

275 motor units would be turned into goal-directable systems. The analysis of spatiotemporal 

276 coordination of the roundhouse kick for this study supports this view, particularly in the target-

277 approach phase of the kick. Our results suggest that non-elite taekwondo players are not able 

278 to exert fine control over abundant degrees of freedom. For example, from piecewise linear 

279 regression measures, non-elite taekwondo player movements were comparatively 

280 “asymmetrical” whereas elite movements were steadily progressive and “smooth” in pattern 

281 during the period to impact. 

282 Mean absolute relative phase and deviation phase measures failed to discriminate 

283 between the movement patterns of the two groups. In contrast, piecewise linear regression, 

284 which divided each of the periods TO-MF and MF-IM into five phases, and averaging after 

285 regression permitted discrimination between the coordination patterns of the two groups.

286 In our research, elite taekwondo players activated kinematic synergies needed for the 

287 task whereas non-elites, whilst demonstrating an ability to operate the essentials of the task, 

288 were not able to combine synergies into an optimal overarching movement. The learning 

289 situation under study produced comparable results to other investigations: reference, for 

290 example, the reduction in active degrees of freedom at joint level recorded by Broderick and 

291 Newell32 in relation to bouncing a basketball. Correspondingly, elite taekwondo players 
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292 (arguably) reduced degrees of freedom of the limb for the roundhouse kick movement to a 

293 single unit (Figure 5) and generated higher average foot centre of mass velocities and forces in 

294 approach to impact (13.6 m.s-1 and 87.5 g, compared to non-elites with values of 11.4 m.s-1 and 

295 70.8 g). Whilst we did not pursue normalisation of target accelerations to the body masses of 

296 participants, we note that, given the lower average mass of elite players (74 versus 86 kg), such 

297 normalisation would increase the difference between group-wise accelerations. Centre of mass 

298 segment velocity of the foot of elite taekwondo players agreed very well with previous studies 

299 (11.9 to 14.8 m.s-1).9,15 The target accelerations for elite taekwondo players observed in this 

300 study are lower than the previously reported results of 130 g.15 An explanation for this 

301 difference may lie in the type of target (Hybrid II head and neck) employed by Fife et al11 since 

302 the target used in this study was much heavier. 

303 The dynamical systems theory approach to lower extremity coordination using the CRP 

304 technique provides a measure of the coordinative interaction of knee-hip and ankle-knee joint 

305 pairs throughout the entire movement cycle, and allows evaluation of the adaptability of 

306 coordination patterns. However, CRP did not capture variations in the way in which the motor 

307 behaviour developed over time, in this case the roundhouse kick. Piecewise linear regression 

308 proved a simple method to quantify this, making hidden coordinative behaviour explicit as 

309 movement variation over time and between groups. 

310 Competitive performance is intrinsically linked to the inter-related characteristics of the 

311 performer-environment system (e.g. permitted rule sets, opponent dynamics, performance 

312 boundaries, external stimuli and individual biophysical properties).33 Such a performance 

313 ecology has the potential to flow from relatively predictable game-play to game-play as an 

314 “adaptive readiness to respond to emerging information”.34 The present study would indicate 

315 that non-elite performers were unable to control effectively their respective coordinative 

316 patterns when faced with a dynamic target environment, i.e. emerging target information. 
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317 Therefore to foster taekwondo player development toward the elite level it seems desirable to 

318 introduce and orchestrate a dynamic element of representative design into taekwondo training 

319 environments and tasks. In doing so, taekwondo players should be presented with task 

320 affordances that enable a large area of task space to be explored and gradual unfreezing of 

321 degrees of freedom in the proximal to distal sequence.31 This in turn enables the player to 

322 experiment with synergistic couplings through a range of movement solutions, fostering 

323 smooth, adaptive responses in the control mechanisms underpinning kicking motion. Woods 

324 et al35 refer to this as a “process of attunement to performance opportunities” which assists in 

325 development of functionally adaptable relationships (i.e. kick-to-target). 

326 There are limitations to this study. The use of angular velocity may propagate errors 

327 due to soft tissue artefacts and those associated with the recording system, thus increasing 

328 uncertainty in the CRP data. The effects of these sources of error were, however, minimised 

329 via joint constraints (translation restraints related to inverse kinematics and differential 

330 filtering) and it is quite unlikely that such issues would result in differential effects between 

331 subject groups. The pattern and variability of inter-joint coordination of the kicking motion 

332 were only examined in the sagittal plane on the basis that the major portion of work was 

333 performed in this plane.20,36,37 The accelerometer inside the kick bag may register small 

334 changes in target dimensions not directly related to the force of impact (noise); however, this 

335 problem was minimised by placing the accelerometer near the target point and signal filtering. 

336 Our findings illustrate differential use of dynamical degrees of freedom between elite 

337 and non-elite taekwondo players, which supports Bernstein’s view.31 Given that kicking was 

338 against a moving target, this suggests that elite players have the ability to freeze and release 

339 degrees of freedom as needed (i.e. conversion to a controllable system)31 whereas non-elite 

340 players do not have such detailed control. From the perspective of dynamical systems theory, 

341 elites developed a movement pattern for which the variability was functional and consequently 
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342 generated higher terminal segment velocities and peak resultant target accelerations. The 

343 combination of CRP and piecewise linear regression methods enhanced understanding of this 

344 complex coordinated movement. Future studies that combine these analyses of lower body 

345 motion with those of the upper body may enhance understanding of skills differences between 

346 player groups and further contribute to coaching development in motor control of complex 

347 movements.
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459 Table Captions

460

461 Table 1 Marker definition and tracking set-up.

462

463 Table 2 Maximum centre of mass segment velocities of kicking legs (m.s-1). Mean ± SEM 

464 values.
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466 Figure Captions

467

468 Figure 1 — Arrangement of the target against which the taekwondo players performed the 

469 roundhouse kick. (a-b) Half-sphere concrete base that held the post and kicking bag. (c) 

470 Instruction panel on A3-size screen. (d) Aluminium plate with triaxial accelerometer 

471 attached. (e) Secure mounting of aluminium plate inside kicking bag via four self-tap screws 

472 (f).

473

474 Figure 2 — Roundhouse kick instances. Toe-off (a, TO), Maximum Knee Flexion (b, MF) 

475 and Impact (c, IM).

476

477 Figure 3 — Piecewise linear regression. An elite knee-hip CRP curve is represented by a 

478 grey solid line, linear fits by dashed lines and knots by black dots. The magnified window 

479 shows detail of the third phase and the fifth and sixth knots and the general piecewise linear 

480 regression equation. y is the observed variable, β0 is the y intercept, β1 is the gradient,  is  𝑥

481 time and ε is an error term. 

482

483 Figure 4 — Continuous relative phase curves for periods TO-MF and MF-IM. Non-elite and 

484 elite player data are represented in (a) and (c), and (b) and (d) respectively; knee-hip and 

485 ankle-knee joint couplings in (a) and (b), and (c) and (d) respectively. The solid line 

486 represents the mean of CRP curves, and the grey area represents mean ± SEM (n = 27).

487

488 Figure 5 — Piecewise linear regression gradients for elite (solid line) and non-elite (dashed 

489 line) CRP curves, varying by taekwondo group, kicking period and joint relation. * indicates 

490 significant differences between elite and non-elite groups as a main effect.
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491

492 Figure 6 — Mean absolute relative phase values (a) and deviation phase values (b) for CRP 

493 curves of elite (solid line) and non-elite (dashed line) taekwondo players. Error bars represent 

494 ± SEM with respect to the mean. n = 27 for all data points.
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Figure 1 — Arrangement of the target against which the TKD players performed the roundhouse kick. (a-b) 
Half-sphere concrete base that held the post and kicking bag. (c) Instruction panel on A3-size screen. (d) 

Aluminium plate with triaxial accelerometer attached. (e) Secure mounting of aluminium plate inside kicking 
bag via four self-tap screws (f). 
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Figure 2 — Roundhouse kick instances. Toe-off (a, TO), Maximum Knee Flexion (b, MF) and Impact (c, IM). 
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Figure 3 — Piecewise linear regression. An elite knee-hip CRP curve is represented by a grey solid line, linear 
fits by dashed lines and knots by black dots. The magnified window shows detail of the third phase and the 
fifth and sixth knots and the general piecewise linear regression equation. y is the observed variable, β0 is 

the y intercept, β1 is the gradient, x is time and ε is an error term. 
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Figure 4 — Continuous relative phase curves for periods TO-MF and MF-IM. Non-elite and elite player data 
are represented in (a) and (c), and (b) and (d) respectively; knee-hip and ankle-knee joint couplings in (a) 
and (b), and (c) and (d) respectively. The solid line represents the mean of CRP curves, and the grey area 

represents mean ± SEM (n = 27). 
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Figure 5 — Piecewise linear regression gradients for elite (solid line) and non-elite (dashed line) CRP curves, 
varying by TKD group, kicking period and joint relation. * indicates significant differences between elite and 

non-elite groups as a main effect. 
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Figure 6 — Mean absolute relative phase values (a) and deviation phase values (b) for CRP curves of elite 
(solid line) and non-elite (dashed line) TKD players. Error bars represent ± SEM with respect to the mean. n 

= 27 for all data points. 
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Table 1

Segment Labels Numbers Definition Tracking Description
ASIS 2   Anterior Superior Iliac SpinePelvis PSIS 2   Posterior Superior Iliac Spine
LEC 2  Lateral Epicondyle of the 

Femur
MEC 2  Medial Epicondyle of the 

Femur
Rigid cluster of four markers were firmly attached anteriorly and proximally with 
Fabrifoam wrap

THI1 2  Thigh 1
THI2 2  Thigh 2
THI3 2  Thigh 3

Thigh

THI4 2  Thigh 4
LMAL 2  Lateral Malleolus
MMAL 2  Medial Malleolus

Rigid cluster of four markers were firmly attached laterally and distally with 
Fabrifoam wrap 

SHK1 2  Shank 1
SHK2 2  Shank 2
SHK3 2  Shank 3

Shank

SHK4 2  Shank 4
MET1D 2  First Metatarsal
MET5D 2  Fifth Metatarsal

CAL 2  Calcaneus
Rigid cluster of three markers were firmly attached on lateral and medial side 
with adapted ankle support 

FOT1 2  Foot 1
FOT2 2  Foot 2

Foot

FOT3 2  Foot 3
Individual marker 18 18 4

Cluster marker 22 22
Total 40 18 26
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Table 2 

TO-MF MF-IM

Non-elite Elite Non-elite Elite 

Pelvis 0.9 (± 0.1) 1.2 (± 0.3) 1.9 (± 0.1) 2.3 (± 0.1)

Thigh 1.2 (± 0.1) 2.2 (± 1.1) 2.3 (± 0.9) 2.7 (± 0.1)

Shank 5.3 (± 0.6)* 6.9 (± 0.3)* 6.3 (± 0.4)* 7.6 (± 0.3)*

Foot 8.8 (± 0.4) 9.5 (± 0.3) 11.3 (± 0.8)* 13.6 (± 0.6)*
* indicates a significant difference between elite and non-elite.
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