PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides.

Journal article


Dennison, S., Reddy, S.M., Morton, L.H.G., Harris, F., Badiani, K. and Phoenix, D.A (2021). PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides. Biochimica et biophysica acta. Biomembranes. 1864 (1), p. 183806. https://doi.org/10.1016/j.bbamem.2021.183806
AuthorsDennison, S., Reddy, S.M., Morton, L.H.G., Harris, F., Badiani, K. and Phoenix, D.A
AbstractAurein 2.1, aurein 2.6 and aurein 3.1 are amphibian host defence peptides that kill bacteria via the use of lytic amphiphilic α-helical structures. The C-terminal PEGylation of these peptides led to decreased antibacterial activity (Minimum Lethal Concentration (MLCs) ↓ circa one and a half to threefold), reduced levels of amphiphilic α-helical structure in solvents (α-helicity ↓ circa 15.0%) and lower surface activity (Δπ ↓ > 1.5 mN m ). This PEGylation of aureins also led to decreased levels of amphiphilic α-helical structure in the presence of anionic membranes and zwitterionic membranes (α-helicity↓ > 10.0%) as well as reduced levels of penetration (Δπ ↓ > 3.0 mN m ) and lysis (lysis ↓ > 10.0%) of these membranes. Based on these data, it was proposed that the antibacterial action of PEGylated aureins involved the adoption of α-helical structures that promote the lysis of bacterial membranes, but with lower efficacy than their native counterparts. However, PEGylation also reduced the haemolytic activity of native aureins to negligible levels (haemolysis ↓ from circa 10% to 3% or less) and improved their relative therapeutic indices (RTIs ↑ circa three to sixfold). Based on these data, it is proposed that PEGylated aureins possess the potential for therapeutic development; for example, to combat infections due to multi-drug resistant strains of S. aureus, designated as high priority by the World Health Organization. [Abstract copyright: Copyright © 2021 Elsevier B.V. All rights reserved.]
KeywordsLangmuir Blodgett monolayers; Aureins; Membrane interactions; α-Helical; Haemolysis; C-terminal PEGylation; Circular dichroism; Amphiphilic
Year2021
JournalBiochimica et biophysica acta. Biomembranes
Journal citation1864 (1), p. 183806
PublisherElsevier
ISSN1879-2642
Digital Object Identifier (DOI)https://doi.org/10.1016/j.bbamem.2021.183806
Publication dates
Online14 Oct 2021
Publication process dates
Accepted10 Oct 2021
Deposited24 Nov 2021
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8y932

Download files


Accepted author manuscript
PEGylated aureins - Accepted.docx
License: CC BY-NC-ND 4.0
File access level: Open

  • 73
    total views
  • 32
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Bacterial susceptibility and resistance to modelin-5.
Dennison, S., Morton, L. H., Badiani, K., Harris, F. and Phoenix, D. (2023). Bacterial susceptibility and resistance to modelin-5. Soft Matter. 19 (42), pp. 8247-8263. https://doi.org/10.1039/d3sm01007d
Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile
Ferguson, Philip M., Clarke, M., Manzo, Giorgia, Hind, Charlotte K., Clifford, Melanie, Sutton, J., Lorenz, C., Phoenix, David A. and Mason, A. (2022). Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile. Biochemistry. 61 (11), pp. 1029-1040. https://doi.org/10.1021/acs.biochem.1c00762
Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials
Manzo, G., Gianfanti, F., Hind, C.K., Allison, L., Clarke, M., Hohenbichler, J., Limantoro, I., Martin, B., Do Carmo Silva, P., Ferguson, P.M., Hodgson-Casson, A., Fleck, R.A., Sutton, J., Phoenix, D.A. and Mason, A. (2021). Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials. ACS Infectious Diseases. 7 (8), pp. 2310-2323. https://doi.org/10.1021/acsinfecdis.1c00002
Antimicrobial Peptides with pH-Dependent Activity and Alkaline Optima: Their Origins, Mechanisms of Action and Potential Applications
Phoenix, D.A., Harris, F. and Dennison, S. (2021). Antimicrobial Peptides with pH-Dependent Activity and Alkaline Optima: Their Origins, Mechanisms of Action and Potential Applications. Current Protein & Peptide Science. 22 (11), pp. 775-799. https://doi.org/10.2174/1389203722666210728105451
Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum.
Malik, E., Phoenix, D., Snape, T.J, Harris, F., Singh, J., Morton, .L.H.G. and Dennison, S. (2021). Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-021-04181-7
A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy.
Manzo, G., Hind, C.K, Ferguson, P.M, Amison, R.T, Hodgson-Casson, A., Ciazynska, K.A., Weller, B.J, Clarke, M., Lam, C., Man, R.C ., O'Shaughnessy, B.G., Clifford, M., Bui, T., Drake, Alex F, Atkinson, R., Lam, J., Pitchford, S.C, Page, C.P, Phoenix, D.A, Lorenz, C., Sutton, J. and Mason, A. (2020). A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Communications biology. 3 (1), p. 697. https://doi.org/10.1038/s42003-020-01420-3
Biophysical studies on the antimicrobial activity of linearized esculentin 2EM
Malik, E., Phoenix, D., Badiana, K., Snape, T.J., Harris, F., Singh, J. and Dennison, S. (2019). Biophysical studies on the antimicrobial activity of linearized esculentin 2EM. BBA: Biomembranes. 1862 (2), p. 183141. https://doi.org/10.1016/j.bbamem.2019.183141
Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities
Manzo, G., Ferguson, P.M., Hind, C.K., Clifford, M., Gustilo, V.B., Ali, H., Bansal, S.S., Bui, T.T., Drake, A.F., Atkinson, R.A., Sutton, J.M., Lorenz, C.D., Phoenix, D. and Mason, A.J. (2019). Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities. Scientific Reports. 9. https://doi.org/10.1038/s41598-019-47327-w
Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity
Manzo, G, Ferguson, PM, Gustilo, VB, Hind, CK, Clifford, M, Bui, TT, Drake, AF, Atkinson, RA, Sutton, JM, Batoni, G, Lorenz, CD, Phoenix, DA and Mason, AJ (2019). Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Scientific Reports. 9 (1), p. 1385. https://doi.org/10.1038/s41598-018-37630-3
Liposome Mediated-CYP1A1 Gene Silencing Nanomedicine Prepared Using Lipid Film-Coated Proliposomes as a Potential Treatment Strategy of Lung Cancer
Zhang, M, Wang, Q, Wan, K, Ahmed, W, Phoenix, D, Zhang, Z, Elrayess, MA, Elhissi, A and Sun, X (2019). Liposome Mediated-CYP1A1 Gene Silencing Nanomedicine Prepared Using Lipid Film-Coated Proliposomes as a Potential Treatment Strategy of Lung Cancer. International Journal of Pharmaceutics. 566, pp. 185-193. https://doi.org/10.1016/j.ijpharm.2019.04.078
Biophysical investigation into the antibacterial action of modelin-5-NH2
Dennison, S, Hauß, T, Badiani, K, Harris, F and Phoenix, D (2019). Biophysical investigation into the antibacterial action of modelin-5-NH2. Soft Matter. https://doi.org/10.1039/C8SM02374C
The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides
Harris, F, Dennison, S, Bhatt, T, Singh, J and Phoenix, DA (2009). The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Molecular and Cellular Biochemistry. 332 (43). https://doi.org/https://www.doi.org/10.1007/s11010-009-0172-8
Investigation of hydrophobic moment and hydrophobicity properties for transmembrane α-helices
Wallace, J, Daman, OA, Harris, F and Phoenix, DA (2004). Investigation of hydrophobic moment and hydrophobicity properties for transmembrane α-helices. Theoretical Biology and Medical Modelling. 1 (5). https://doi.org/10.1186/1742-4682-1-5
An Atlas of Anionic Antimicrobial Peptides from Amphibians
Dennison, SR, Harris, F, Mura, M and Phoenix, DA (2018). An Atlas of Anionic Antimicrobial Peptides from Amphibians. Current Protein & Peptide Science. 19 (8), pp. 823-838. https://doi.org/10.2174/1389203719666180226155035
Bacterial resistance to host defence peptides
Phoenix, DA, Dennison, SR and Harris, F (2016). Bacterial resistance to host defence peptides. in: Host Defense Peptides and Their Potential as Therapeutic Agents Springer. pp. 161-204
Prediction of Peptide and Protein Propensity for Amyloid Formation
Famlia, C, Dennison, SR, Quintas, A and Phoenix, DA (2015). Prediction of Peptide and Protein Propensity for Amyloid Formation. PLoS ONE. 10. https://doi.org/10.1371/journal.pone.0134679
Investigations into the potential anticancer activity of Maximin H5
Dennison, SR, Harris, F and Phoenix, DA (2017). Investigations into the potential anticancer activity of Maximin H5. Biochimie. 137 (June), pp. 29-34. https://doi.org/10.1016/j.biochi.2017.02.013
The effect of amidation on the behaviour of antimicrobial peptides
Mura, M, Wang, J, Zhou, Y, Pinna, M, Zvelindovsky, A, Dennison, SR and Phoenix, DA (2016). The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal. 45 (3), pp. 195-207. https://doi.org/10.1007/s00249-015-1094-x
Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance
Dennison, S, Morton, L, Harris, F and Phoenix, DA (2016). Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance. Biochemistry. 55 (27), pp. 3735-3751. https://doi.org/10.1021/acs.biochem.6b00101
Anionic host defence peptides from the plant kingdom: their anticancer activity and mechanisms of action
Harris, F, Prabhu, S, R Dennison, S, J Snape, T, Lea, R, Mura, M and Phoenix, DA (2016). Anionic host defence peptides from the plant kingdom: their anticancer activity and mechanisms of action. Protein and peptide letters. 23 (8), pp. 676-687. https://doi.org/10.2174/0929866523666160511151215
PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents
Malik, E, Dennison, SR, Harris, F and Phoenix, DA (2016). PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals. 9 (4). https://doi.org/10.3390/ph9040067
Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells
Najlah, M, Jain, M, Wan, KW, Ahmed, W, Albed Alhnan, M, Phoenix, DA, Taylor, KMG and Elhissi, A (2016). Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. Journal of Liposome Research. 28 (1), pp. 74-85. https://doi.org/10.1080/08982104.2016.1259628
The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.
Dennison, SR, Mura, M, Harris, F, Morton, LH, Zvelindovsky, A and Phoenix, DA (2015). The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. BBA - Biochimica et Biophysica Acta. 1848 (5), pp. 1111 - 1118. https://doi.org/10.1016/j.bbamem.2015.01.014