Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile

Journal article


Ferguson, Philip M., Clarke, M., Manzo, Giorgia, Hind, Charlotte K., Clifford, Melanie, Sutton, J., Lorenz, C., Phoenix, David A. and Mason, A. (2022). Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile. Biochemistry. 61 (11), pp. 1029-1040. https://doi.org/10.1021/acs.biochem.1c00762
AuthorsFerguson, Philip M., Clarke, M., Manzo, Giorgia, Hind, Charlotte K., Clifford, Melanie, Sutton, J., Lorenz, C., Phoenix, David A. and Mason, A.
Abstract

The pharmacodynamic profile of antimicrobial peptides (AMPs) and their in vivo synergy are two factors that are thought to restrict resistance evolution and ensure their conservation. The frog Rana temporaria secretes a family of closely related AMPs, temporins A–L, as an effective chemical dermal defense. The antibacterial potency of temporin L has been shown to increase synergistically in combination with both temporins B and A, but this is modest. Here we show that the less potent temporin B enhances the cooperativity of the in vitro antibacterial activity of the more potent temporin L against EMRSA-15 and that this may be associated with an altered interaction with the bacterial plasma membrane, a feature critical for the antibacterial activity of most AMPs. Addition of buforin II, a histone H2A fragment, can further increase the cooperativity. Molecular dynamics simulations indicate temporins B and L readily form hetero-oligomers in models of Gram-positive bacterial plasma membranes. Patch-clamp studies show transmembrane ion conductance is triggered with lower amounts of both peptides and more quickly when used in combination, but conductance is of a lower amplitude and pores are smaller. Temporin B may therefore act by forming temporin L/B hetero-oligomers that are more effective than temporin L homo-oligomers at bacterial killing and/or by reducing the probability of the latter forming until a threshold concentration is reached. Exploration of the mechanism of synergy between AMPs isolated from the same organism may therefore yield antibiotic combinations with advantageous pharmacodynamic properties.

KeywordsBiochemistry
Year2022
JournalBiochemistry
Journal citation61 (11), pp. 1029-1040
PublisherAmerican Chemical Society (ACS)
ISSN0006-2960
1520-4995
Digital Object Identifier (DOI)https://doi.org/10.1021/acs.biochem.1c00762
Funder/ClientEngineering and Physical Sciences Research Council
Publication dates
Online24 May 2022
Print07 Jun 2022
Publication process dates
Accepted28 Apr 2022
Deposited16 Jun 2022
Publisher's version
License
File Access Level
Open
Licensehttps://creativecommons.org/licenses/by/4.0/
Permalink -

https://openresearch.lsbu.ac.uk/item/91122

Download files


Publisher's version
acs.biochem.1c00762.pdf
License: CC BY 4.0
File access level: Open

  • 49
    total views
  • 79
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Bacterial susceptibility and resistance to modelin-5.
Dennison, S., Morton, L. H., Badiani, K., Harris, F. and Phoenix, D. (2023). Bacterial susceptibility and resistance to modelin-5. Soft Matter. 19 (42), pp. 8247-8263. https://doi.org/10.1039/d3sm01007d
PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides.
Dennison, S., Reddy, S.M., Morton, L.H.G., Harris, F., Badiani, K. and Phoenix, D.A (2021). PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides. Biochimica et biophysica acta. Biomembranes. 1864 (1), p. 183806. https://doi.org/10.1016/j.bbamem.2021.183806
Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials
Manzo, G., Gianfanti, F., Hind, C.K., Allison, L., Clarke, M., Hohenbichler, J., Limantoro, I., Martin, B., Do Carmo Silva, P., Ferguson, P.M., Hodgson-Casson, A., Fleck, R.A., Sutton, J., Phoenix, D.A. and Mason, A. (2021). Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials. ACS Infectious Diseases. 7 (8), pp. 2310-2323. https://doi.org/10.1021/acsinfecdis.1c00002
Antimicrobial Peptides with pH-Dependent Activity and Alkaline Optima: Their Origins, Mechanisms of Action and Potential Applications
Phoenix, D.A., Harris, F. and Dennison, S. (2021). Antimicrobial Peptides with pH-Dependent Activity and Alkaline Optima: Their Origins, Mechanisms of Action and Potential Applications. Current Protein & Peptide Science. 22 (11), pp. 775-799. https://doi.org/10.2174/1389203722666210728105451
Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum.
Malik, E., Phoenix, D., Snape, T.J, Harris, F., Singh, J., Morton, .L.H.G. and Dennison, S. (2021). Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-021-04181-7
A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy.
Manzo, G., Hind, C.K, Ferguson, P.M, Amison, R.T, Hodgson-Casson, A., Ciazynska, K.A., Weller, B.J, Clarke, M., Lam, C., Man, R.C ., O'Shaughnessy, B.G., Clifford, M., Bui, T., Drake, Alex F, Atkinson, R., Lam, J., Pitchford, S.C, Page, C.P, Phoenix, D.A, Lorenz, C., Sutton, J. and Mason, A. (2020). A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Communications biology. 3 (1), p. 697. https://doi.org/10.1038/s42003-020-01420-3
Biophysical studies on the antimicrobial activity of linearized esculentin 2EM
Malik, E., Phoenix, D., Badiana, K., Snape, T.J., Harris, F., Singh, J. and Dennison, S. (2019). Biophysical studies on the antimicrobial activity of linearized esculentin 2EM. BBA: Biomembranes. 1862 (2), p. 183141. https://doi.org/10.1016/j.bbamem.2019.183141
Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities
Manzo, G., Ferguson, P.M., Hind, C.K., Clifford, M., Gustilo, V.B., Ali, H., Bansal, S.S., Bui, T.T., Drake, A.F., Atkinson, R.A., Sutton, J.M., Lorenz, C.D., Phoenix, D. and Mason, A.J. (2019). Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities. Scientific Reports. 9. https://doi.org/10.1038/s41598-019-47327-w
Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity
Manzo, G, Ferguson, PM, Gustilo, VB, Hind, CK, Clifford, M, Bui, TT, Drake, AF, Atkinson, RA, Sutton, JM, Batoni, G, Lorenz, CD, Phoenix, DA and Mason, AJ (2019). Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Scientific Reports. 9 (1), p. 1385. https://doi.org/10.1038/s41598-018-37630-3
Liposome Mediated-CYP1A1 Gene Silencing Nanomedicine Prepared Using Lipid Film-Coated Proliposomes as a Potential Treatment Strategy of Lung Cancer
Zhang, M, Wang, Q, Wan, K, Ahmed, W, Phoenix, D, Zhang, Z, Elrayess, MA, Elhissi, A and Sun, X (2019). Liposome Mediated-CYP1A1 Gene Silencing Nanomedicine Prepared Using Lipid Film-Coated Proliposomes as a Potential Treatment Strategy of Lung Cancer. International Journal of Pharmaceutics. 566, pp. 185-193. https://doi.org/10.1016/j.ijpharm.2019.04.078
Biophysical investigation into the antibacterial action of modelin-5-NH2
Dennison, S, Hauß, T, Badiani, K, Harris, F and Phoenix, D (2019). Biophysical investigation into the antibacterial action of modelin-5-NH2. Soft Matter. https://doi.org/10.1039/C8SM02374C
The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides
Harris, F, Dennison, S, Bhatt, T, Singh, J and Phoenix, DA (2009). The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Molecular and Cellular Biochemistry. 332 (43). https://doi.org/https://www.doi.org/10.1007/s11010-009-0172-8
Investigation of hydrophobic moment and hydrophobicity properties for transmembrane α-helices
Wallace, J, Daman, OA, Harris, F and Phoenix, DA (2004). Investigation of hydrophobic moment and hydrophobicity properties for transmembrane α-helices. Theoretical Biology and Medical Modelling. 1 (5). https://doi.org/10.1186/1742-4682-1-5
An Atlas of Anionic Antimicrobial Peptides from Amphibians
Dennison, SR, Harris, F, Mura, M and Phoenix, DA (2018). An Atlas of Anionic Antimicrobial Peptides from Amphibians. Current Protein & Peptide Science. 19 (8), pp. 823-838. https://doi.org/10.2174/1389203719666180226155035
Bacterial resistance to host defence peptides
Phoenix, DA, Dennison, SR and Harris, F (2016). Bacterial resistance to host defence peptides. in: Host Defense Peptides and Their Potential as Therapeutic Agents Springer. pp. 161-204
Prediction of Peptide and Protein Propensity for Amyloid Formation
Famlia, C, Dennison, SR, Quintas, A and Phoenix, DA (2015). Prediction of Peptide and Protein Propensity for Amyloid Formation. PLoS ONE. 10. https://doi.org/10.1371/journal.pone.0134679
Investigations into the potential anticancer activity of Maximin H5
Dennison, SR, Harris, F and Phoenix, DA (2017). Investigations into the potential anticancer activity of Maximin H5. Biochimie. 137 (June), pp. 29-34. https://doi.org/10.1016/j.biochi.2017.02.013
The effect of amidation on the behaviour of antimicrobial peptides
Mura, M, Wang, J, Zhou, Y, Pinna, M, Zvelindovsky, A, Dennison, SR and Phoenix, DA (2016). The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal. 45 (3), pp. 195-207. https://doi.org/10.1007/s00249-015-1094-x
Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance
Dennison, S, Morton, L, Harris, F and Phoenix, DA (2016). Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance. Biochemistry. 55 (27), pp. 3735-3751. https://doi.org/10.1021/acs.biochem.6b00101
Anionic host defence peptides from the plant kingdom: their anticancer activity and mechanisms of action
Harris, F, Prabhu, S, R Dennison, S, J Snape, T, Lea, R, Mura, M and Phoenix, DA (2016). Anionic host defence peptides from the plant kingdom: their anticancer activity and mechanisms of action. Protein and peptide letters. 23 (8), pp. 676-687. https://doi.org/10.2174/0929866523666160511151215
PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents
Malik, E, Dennison, SR, Harris, F and Phoenix, DA (2016). PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals. 9 (4). https://doi.org/10.3390/ph9040067
Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells
Najlah, M, Jain, M, Wan, KW, Ahmed, W, Albed Alhnan, M, Phoenix, DA, Taylor, KMG and Elhissi, A (2016). Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. Journal of Liposome Research. 28 (1), pp. 74-85. https://doi.org/10.1080/08982104.2016.1259628
The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.
Dennison, SR, Mura, M, Harris, F, Morton, LH, Zvelindovsky, A and Phoenix, DA (2015). The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. BBA - Biochimica et Biophysica Acta. 1848 (5), pp. 1111 - 1118. https://doi.org/10.1016/j.bbamem.2015.01.014