Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum.

Journal article


Malik, E., Phoenix, D., Snape, T.J, Harris, F., Singh, J., Morton, .L.H.G. and Dennison, S. (2021). Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-021-04181-7
AuthorsMalik, E., Phoenix, D., Snape, T.J, Harris, F., Singh, J., Morton, .L.H.G. and Dennison, S.
AbstractHere the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 μM) but potent efficacy towards Gram-positive bacteria (MLCs ≤ 6.25 μM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5-26.9%), whilst similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3-5.1 mN m ) and lyse (↑ 15.1-32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1-23) in the N → C direction, with -  < µH > increasing overall from circa - 0.8 to - 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the first, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process. It is proposed that E2EM-lin has the potential for development to serve purposes ranging from therapeutic usage, such as chronic wound disinfection, to food preservation by killing food spoilage organisms.
KeywordsLinearized esculentin 2EM (E2EM-lin); Preference for gram-positive bacteria; Tilted peptide; pH dependent with alkaline optimum; α-Helical structure
Year2021
JournalMolecular and Cellular Biochemistry
PublisherSpringer
ISSN1573-4919
Digital Object Identifier (DOI)https://doi.org/10.1007/s11010-021-04181-7
Publication dates
Online06 Jun 2021
Publication process dates
Accepted12 May 2021
Deposited24 Jun 2021
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8x0qy

Download files


Publisher's version
Malik2021_Article_LinearizedEsculentin-2EMShowsP.pdf
License: CC BY 4.0
File access level: Open

  • 70
    total views
  • 53
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Bacterial susceptibility and resistance to modelin-5.
Dennison, S., Morton, L. H., Badiani, K., Harris, F. and Phoenix, D. (2023). Bacterial susceptibility and resistance to modelin-5. Soft Matter. 19 (42), pp. 8247-8263. https://doi.org/10.1039/d3sm01007d
Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile
Ferguson, Philip M., Clarke, M., Manzo, Giorgia, Hind, Charlotte K., Clifford, Melanie, Sutton, J., Lorenz, C., Phoenix, David A. and Mason, A. (2022). Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile. Biochemistry. 61 (11), pp. 1029-1040. https://doi.org/10.1021/acs.biochem.1c00762
PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides.
Dennison, S., Reddy, S.M., Morton, L.H.G., Harris, F., Badiani, K. and Phoenix, D.A (2021). PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides. Biochimica et biophysica acta. Biomembranes. 1864 (1), p. 183806. https://doi.org/10.1016/j.bbamem.2021.183806
Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials
Manzo, G., Gianfanti, F., Hind, C.K., Allison, L., Clarke, M., Hohenbichler, J., Limantoro, I., Martin, B., Do Carmo Silva, P., Ferguson, P.M., Hodgson-Casson, A., Fleck, R.A., Sutton, J., Phoenix, D.A. and Mason, A. (2021). Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials. ACS Infectious Diseases. 7 (8), pp. 2310-2323. https://doi.org/10.1021/acsinfecdis.1c00002
Antimicrobial Peptides with pH-Dependent Activity and Alkaline Optima: Their Origins, Mechanisms of Action and Potential Applications
Phoenix, D.A., Harris, F. and Dennison, S. (2021). Antimicrobial Peptides with pH-Dependent Activity and Alkaline Optima: Their Origins, Mechanisms of Action and Potential Applications. Current Protein & Peptide Science. 22 (11), pp. 775-799. https://doi.org/10.2174/1389203722666210728105451
A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy.
Manzo, G., Hind, C.K, Ferguson, P.M, Amison, R.T, Hodgson-Casson, A., Ciazynska, K.A., Weller, B.J, Clarke, M., Lam, C., Man, R.C ., O'Shaughnessy, B.G., Clifford, M., Bui, T., Drake, Alex F, Atkinson, R., Lam, J., Pitchford, S.C, Page, C.P, Phoenix, D.A, Lorenz, C., Sutton, J. and Mason, A. (2020). A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Communications biology. 3 (1), p. 697. https://doi.org/10.1038/s42003-020-01420-3
Biophysical studies on the antimicrobial activity of linearized esculentin 2EM
Malik, E., Phoenix, D., Badiana, K., Snape, T.J., Harris, F., Singh, J. and Dennison, S. (2019). Biophysical studies on the antimicrobial activity of linearized esculentin 2EM. BBA: Biomembranes. 1862 (2), p. 183141. https://doi.org/10.1016/j.bbamem.2019.183141
Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities
Manzo, G., Ferguson, P.M., Hind, C.K., Clifford, M., Gustilo, V.B., Ali, H., Bansal, S.S., Bui, T.T., Drake, A.F., Atkinson, R.A., Sutton, J.M., Lorenz, C.D., Phoenix, D. and Mason, A.J. (2019). Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities. Scientific Reports. 9. https://doi.org/10.1038/s41598-019-47327-w
Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity
Manzo, G, Ferguson, PM, Gustilo, VB, Hind, CK, Clifford, M, Bui, TT, Drake, AF, Atkinson, RA, Sutton, JM, Batoni, G, Lorenz, CD, Phoenix, DA and Mason, AJ (2019). Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Scientific Reports. 9 (1), p. 1385. https://doi.org/10.1038/s41598-018-37630-3
Liposome Mediated-CYP1A1 Gene Silencing Nanomedicine Prepared Using Lipid Film-Coated Proliposomes as a Potential Treatment Strategy of Lung Cancer
Zhang, M, Wang, Q, Wan, K, Ahmed, W, Phoenix, D, Zhang, Z, Elrayess, MA, Elhissi, A and Sun, X (2019). Liposome Mediated-CYP1A1 Gene Silencing Nanomedicine Prepared Using Lipid Film-Coated Proliposomes as a Potential Treatment Strategy of Lung Cancer. International Journal of Pharmaceutics. 566, pp. 185-193. https://doi.org/10.1016/j.ijpharm.2019.04.078
Biophysical investigation into the antibacterial action of modelin-5-NH2
Dennison, S, Hauß, T, Badiani, K, Harris, F and Phoenix, D (2019). Biophysical investigation into the antibacterial action of modelin-5-NH2. Soft Matter. https://doi.org/10.1039/C8SM02374C
The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides
Harris, F, Dennison, S, Bhatt, T, Singh, J and Phoenix, DA (2009). The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Molecular and Cellular Biochemistry. 332 (43). https://doi.org/https://www.doi.org/10.1007/s11010-009-0172-8
Investigation of hydrophobic moment and hydrophobicity properties for transmembrane α-helices
Wallace, J, Daman, OA, Harris, F and Phoenix, DA (2004). Investigation of hydrophobic moment and hydrophobicity properties for transmembrane α-helices. Theoretical Biology and Medical Modelling. 1 (5). https://doi.org/10.1186/1742-4682-1-5
An Atlas of Anionic Antimicrobial Peptides from Amphibians
Dennison, SR, Harris, F, Mura, M and Phoenix, DA (2018). An Atlas of Anionic Antimicrobial Peptides from Amphibians. Current Protein & Peptide Science. 19 (8), pp. 823-838. https://doi.org/10.2174/1389203719666180226155035
Bacterial resistance to host defence peptides
Phoenix, DA, Dennison, SR and Harris, F (2016). Bacterial resistance to host defence peptides. in: Host Defense Peptides and Their Potential as Therapeutic Agents Springer. pp. 161-204
Prediction of Peptide and Protein Propensity for Amyloid Formation
Famlia, C, Dennison, SR, Quintas, A and Phoenix, DA (2015). Prediction of Peptide and Protein Propensity for Amyloid Formation. PLoS ONE. 10. https://doi.org/10.1371/journal.pone.0134679
Investigations into the potential anticancer activity of Maximin H5
Dennison, SR, Harris, F and Phoenix, DA (2017). Investigations into the potential anticancer activity of Maximin H5. Biochimie. 137 (June), pp. 29-34. https://doi.org/10.1016/j.biochi.2017.02.013
The effect of amidation on the behaviour of antimicrobial peptides
Mura, M, Wang, J, Zhou, Y, Pinna, M, Zvelindovsky, A, Dennison, SR and Phoenix, DA (2016). The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal. 45 (3), pp. 195-207. https://doi.org/10.1007/s00249-015-1094-x
Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance
Dennison, S, Morton, L, Harris, F and Phoenix, DA (2016). Low pH enhances the action of maximin H5 against Staphylococcus aureus and helps mediate lysylated phosphatidylglycerol induced resistance. Biochemistry. 55 (27), pp. 3735-3751. https://doi.org/10.1021/acs.biochem.6b00101
Anionic host defence peptides from the plant kingdom: their anticancer activity and mechanisms of action
Harris, F, Prabhu, S, R Dennison, S, J Snape, T, Lea, R, Mura, M and Phoenix, DA (2016). Anionic host defence peptides from the plant kingdom: their anticancer activity and mechanisms of action. Protein and peptide letters. 23 (8), pp. 676-687. https://doi.org/10.2174/0929866523666160511151215
PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents
Malik, E, Dennison, SR, Harris, F and Phoenix, DA (2016). PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals. 9 (4). https://doi.org/10.3390/ph9040067
Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells
Najlah, M, Jain, M, Wan, KW, Ahmed, W, Albed Alhnan, M, Phoenix, DA, Taylor, KMG and Elhissi, A (2016). Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. Journal of Liposome Research. 28 (1), pp. 74-85. https://doi.org/10.1080/08982104.2016.1259628
The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5.
Dennison, SR, Mura, M, Harris, F, Morton, LH, Zvelindovsky, A and Phoenix, DA (2015). The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. BBA - Biochimica et Biophysica Acta. 1848 (5), pp. 1111 - 1118. https://doi.org/10.1016/j.bbamem.2015.01.014