Biomechanical strategies to reach a compromise between stiffness and flexibility in hind femora of desert locusts

Journal article


Li. C., Gorb, S. and Rajabi, H. (2021). Biomechanical strategies to reach a compromise between stiffness and flexibility in hind femora of desert locusts. Acta Biomaterialia. 134, pp. 490-498. https://doi.org/10.1016/j.actbio.2021.07.030
AuthorsLi. C., Gorb, S. and Rajabi, H.
Abstract

Insect cuticle can reach a wide range of material properties, which is thought to be the result of adaptations to applied mechanical stresses. Biomechanical mechanisms behind these property variations remain largely unknown. To fill this gap, here we performed a comprehensive study by simultaneous investigation of the microstructure, sclerotization and the elasticity modulus of the specialized cuticle of the femora of desert locusts. We hypothesized that, considering their different roles in jumping, the femora of fore-, mid- and hind legs should be equipped with cuticles that have different mechanical properties. Surprisingly, our results showed that the hind femur, which typically bears higher stresses, has a lower elasticity modulus than the fore and mid femora in the longitudinal direction. This is likely due to the lower sclerotization and different microstructure of the hind femur cuticle. This allows for some deformability in the femur wall and is likely to reduce the risk of mechanical failure. In contrast to both other femora, the hind femur is also equipped with a set of sclerotized ridges that are likely to provide it with the required stiffness to withstand the mechanical loads during walking and jumping. This paper is one of only a few comprehensive studies on insect cuticle, which advances the current understanding of the relationship between the structure, material property and function in this complex biological composite.

KeywordsBiomechanics; Nanoindentation; Microstructure; Functional adaptation; Muscle; Insect; Cuticle
Year2021
JournalActa Biomaterialia
Journal citation134, pp. 490-498
Digital Object Identifier (DOI)https://doi.org/10.1016/j.actbio.2021.07.030
Web address (URL)https://www.sciencedirect.com/science/article/abs/pii/S1742706121004682
Publication dates
Print19 Jul 2021
Publication process dates
Accepted13 Jul 2021
Deposited05 Nov 2021
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8y8vv

Restricted files

Accepted author manuscript

  • 3
    total views
  • 1
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Fin Ray Crossbeam Angles for Efficient Foot Design for Energy‐Efficient Robot Locomotion
Manoonpong, P., Rajabi, Hamed, Larsen, Jørgen C., Raoufi, Seyed S., Asawalertsak, Naris, Homchanthanakul, J., Tramsen, Halvor T., Darvizeh, Abolfazl and Gorb, S. (2021). Fin Ray Crossbeam Angles for Efficient Foot Design for Energy‐Efficient Robot Locomotion. Advanced Intelligent Systems. p. 2100133. https://doi.org/10.1002/aisy.202100133
Elytra coupling of the ladybird Coccinella septempunctata functions as an energy absorber in intentional falls
Rajabi, H., Zhang, J., Yuan, Q., Jiang, Y., Pang, H., Wu, Z. and Wu, J. (2021). Elytra coupling of the ladybird Coccinella septempunctata functions as an energy absorber in intentional falls. Bioinspiration & biomimetics. 16, p. 056018. https://doi.org/10.1088/1748-3190/ac1cef
The damping and structural properties of dragonfly and damselfly wings during dynamic movement
Lietz, C., Schaber, C.F., Gorb, S.N. and Hamed, R. (2021). The damping and structural properties of dragonfly and damselfly wings during dynamic movement. Communications biology. 4, p. 737. https://doi.org/10.1038/s42003-021-02263-2
Double-rowed teeth: design specialization of the H. venator ants for enhanced tribological stability
Zhang, W., Wu, Z., Wang, Z., Wang, Z., Li, C., Rajabi, H. and Wu, J. (2021). Double-rowed teeth: design specialization of the H. venator ants for enhanced tribological stability. Bioinspiration & biomimetics. 16 (5), p. 055003. https://doi.org/10.1088/1748-3190/ac124a