Use of video technology to enhance telemedicine applications

Journal article


Zhang, J. (2021). Use of video technology to enhance telemedicine applications. International Journal of Biosensors & Bioelectronics. 7 (2), pp. 30-34. https://doi.org/DOI:10.15406/ijbsbe.2021.07.00208
AuthorsZhang, J.
Abstract

Telemedicine uses information and communication technologies (ICT) to deliver healthcare services remotely, thus removing geographical barriers. Video technology can effectively facilitate the growth of telemedicine. This paper discusses the applications of video technology to enhance telemedicine services. The general functions of telemedicine
videoconferencing systems are reviewed. The display technology is also discussed. It is expected that advanced monitors with 8K resolution can be used in future telemedicine videoconferencing systems to significantly improve the image quality and service performance.

KeywordsVideo technology, telemedicine, blood pressure, temperature, healthcare professionals, monitors
Year2021
JournalInternational Journal of Biosensors & Bioelectronics
Journal citation7 (2), pp. 30-34
PublisherMedCrave
ISSN2573-2838
Digital Object Identifier (DOI)https://doi.org/DOI:10.15406/ijbsbe.2021.07.00208
Web address (URL)https://medcraveonline.com/IJBSBE/use-of-video-technology-to-enhance-telemedicine-applications.html
Publication dates
Print09 Mar 2021
Publication process dates
Accepted08 Mar 2021
Deposited09 Jul 2024
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/979x9

Download files


Publisher's version
IJBSBE-07-00208.pdf
License: CC BY 4.0
File access level: Open

  • 0
    total views
  • 2
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

The Role of Video Technology in Telemedicine
Zhang, J-G. (2021). The Role of Video Technology in Telemedicine. International Conference on Integrated Emerging Methods of Artificial Intelligence and Cloud Computing (IEMAICLOUD 2021) . London, UK 26 - 29 Apr 2021
Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser
Song, J., Hu, X., Wang, H., Duan, T., Wang, Y., Liu, Y. and Zhang, J. (2019). Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser. IEEE Photonics Journal. 11 (6). https://doi.org/10.1109/JPHOT.2019.2937324
L-band mode-locked femtosecond fiber laser with gigahertz repetition rate
Song, J., Liu, Y. and Zhang, J. (2019). L-band mode-locked femtosecond fiber laser with gigahertz repetition rate. Applied Optics. 58 (27), pp. 7577-7581. https://doi.org/10.1364/AO.58.007577
All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate
Song, J., Hu, X., Wang, H., Zhang, T., Wang, Y., Liu, Y. and Zhang, J. (2019). All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate. Laser Physics Letters. 16 (9). https://doi.org/10.1088/1612-202X/ab3421
Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate
Song, J, Wang, H, Huang, X, Hu, X, Zhang, T, Wang, Y, Liu, Y and Zhang, J. (2019). Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics. 58 (7), pp. 1733-1738. https://doi.org/10.1364/AO.58.001733
Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre
Zhang, J., Liu, Y and Tang, D (2016). Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre. Opto-Electronics Review. 24 (2), pp. 62-74. https://doi.org/10.1515/oere-2016-0010
All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber
Hui, ZQ, Zhang, B and Zhang, J. (2015). All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber. Journal of Modern Optics. 63 (8), pp. 724 - 734. https://doi.org/10.1080/09500340.2015.1094149